Exploring the Impacts of Character Modeling and CoAttention on BiDAF Performance

Introduction

Question-answering (QA) is a highly relevant area of focus in the Natural Language Processing Question-answering (QA) is a highly relevant area of focus in the Natural Language Processing (NLP) community, QA systems are both useful tools in themselves, and provide us with a better understanding of how well machines encode human language. Massive improvements have been made to QA models in recent years with the introduction of neural attention mechanisms. I focus on one such model, BiDirectional Attention Flow (BiDAF). While I do not propose any significant novel components, I explore the addition of character-level embeddings to BiDAF. Further, I examine the impacts of CoAttention, a secondary attention model, on BiDAF performance in order to better understand the functions of both BiDirectional and CoAttention and the interaction between the two. The models are evaluated on the Stanford Question Answering 2.0 (SQuAD 2.0) dataset.[3]

Related Work

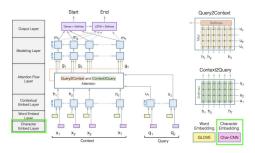
This exploration interprets the following previous work in the QA domain:

- Character embeddings use a single convolutional layer and max-pooling to build character
- representations [1]

 Previously, QA models typically attended to small portions of the context with uni-directional
- BiDirectional attention represents direct query-to-context and context-to-query attention, but only performs a single pass [4]
 CoAttention attends over first-level bidirectional attention, outputting a second-level attention representation [5].

BiDAF Baseline

The baseline model is based on the BiDirectional Attention Flow model (BiDAF), BiDAF consists of a word-Embedding layer, an Encoder layer, a BiDirectional Attention layer, a Modeling layer, and an Output layer. The BiDirectional attention layer represents query-to-context and context-to-query attention. The original BiDAF model also includes character embeddings that are not included in the baseline, highlighted in green in Figure 1.



Approaches

- 1. Re-integrating Character embeddings to emulate original BiDAF model.[1],[4] Character embeddings are used in further explorations.
- Replacing Bidirectional attention layer with a CoAttention layer described below.[5]
- 3. Creating the Dual Attention layer by concatenating Bidirectional and CoAttenion outputs.

CoAttention Layer

CoAttention includes a secondary attention computation that attends over the first-level attention output. For question hidden states q_1,\dots,q_M and context hidden states c_1,\dots,c_N :

- 1. $q'=\tanh(Wq+b)$
- Randomly-initialized sentinel vectors are concatenated to c and q'
- Affinity matrix $\mathbf{L} = c^T q$ is computed
- 4. Context-to-Question attention distributions $\alpha = \operatorname{softmax}(\mathbf{L}_{i\cdot})$
- 5. Context-to-Question attention outputs $a = \sum_{j=1}^{M+1} \alpha_j q_j$ 6. Question-to-Context attention distributions $\beta = \operatorname{softmax}(\mathbf{L}_{.j})$ 7. Question-to-Context attention outputs $b = \sum_{i=1}^{N+1} c_i$
- 8. $s=\sum_{j=1}^{M+1}\alpha_jb_j, [s;a][:N]$ fed through 2-layer GRU to obtain CoAttention output u

- Character embeddings and Dual Attention outperform BiDAF baseline
- CoAttention outperforms BiDAF baseline but reduces performance of character embedding model with BiDirectional attention
- Dual Attention outperforms all other models explored

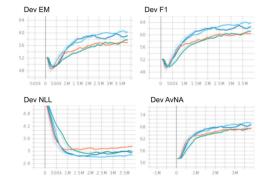


Figure 2. Model performance leveled out around Epoch 30 for all models.

Baseline Char Embed CoAttention Dual Attention

	Dev		Test	
	F1	EM	F1	EM
BiDAF Baseline	60.412	56.898		
BiDAF with Character-Level Embeddings	63.445	60.208	62.490	58.969
BiDAF with CoAttention	62.012	58.578		
BiDAF with Dual Attention	64.396	60.931	63.926	60.338

Table 1. Model built off of the BiDAF baseline implemented in pytorch.[2] Performance on the SQuAD 2.0 dataset evaluated using both F1 and EM scores.[3]

Key Findings

- 1. Character embeddings improved baseline as expected [4]
- 1. Châracter embedunigs improved baseline às expected (4) et likely improve upon the model turneen words and therefore to generalle outside of the training set.
 2. CoAttention layer worsened performance of character embedding model e coald be attributed to a poor implementation of the CoAttention layer worsened performance of character embedding model e coald be attributed to a poor implementation of the CoAttention layer layers of the coald be attributed to a poor implementation of the CoAttention layer layers of the coald be attributed to a poor implementation of the CoAttention layers (1) and the coald be attributed to a poor implementation of the CoAttention layers (1) and the coald be a poor the coald be attributed to a poor the coald be attributed to a poor the coald be attributed to th

- Dual Attention model outperforms all other models explored
 supports theory that information passed to future layers using first-level attention improves model
 performance
 suggests that CoAttention layer was likely implemented correctly
 suggests that CoAttention contains useful secondary information that supports BiDirectional attention output
 slayer size is obtained by the size of t

Next Steps

This exploration highlights important attributes of the BiDAF model. Primarily, character em-This exploration highlights important attributes of the BIDAF model. Primarily, character embeddings allow the model to generalize outside of the training set to unseen works by capturing sub-word meaning, greatly improving BIDAF performance. Secondly, BiDirectional attention is an integral component of BIDAF—as the name suggests—because it provides future layers with important first-level context-to-question and question-to-context information. On its own, CoAstention negatively impacts BIDAF performance, likely because second-level attention does not carry enough information on its own to support the model. This is supported by the high performance of Dual Attention, suggesting the second-level information of CoAttention positively complements the more powerful BiDirectional attention. While I have improved upon the BiDAF baseline with character embeddings and Dual Attention, there is still great room for exploration and improvement within BIDAF and the SQuAD 2.0 question-answering task:

- exploring the effects of larger embeddings, or n-gram embeddings
- explore other attention models such as Self Attention by substituting or concattenating similar to Dual Attention
- · with greater resources, hyperparameter tuning in order to maximize model performance

References

- Systems 32, pages 8024–8035. Curran Associates, Inc., 2019. Parana Rajparian, Rabini Sau, and Perry Lisan (Sarana Rabini Sau, Albery Lisan Kinawa Harina Kinawa Harina Kinawa Harina Kinawa Harina Kinawa Ki