

Augmenting BiDAF with Components from R-NET for Question and Answering on SQUAD 2.0

Brandon Vu, Nyle Wong, Richard Chen; Mentor: Fenglu Hong

Department of Computer Science

Introduction

- SQuAD2.0 [1] is a question-answering dataset based on context-question-answer triplets with context from Wikipedia articles and question-passage pairs generated from Amazon Mechanical Turk
- Desired answer is certain span of words in the given context; goal is to find start and end token
- Notably, there are also "unanswerable" questions added in SQuAD2.0
 where the answer cannot be found within the context, and models are
 expected to indicate this
- Our model aims to achieve a high performance on the SQuAD2.0 dataset without the use of any pretrained transformers

Background

Example Question

Context: The further decline of Byzantine state-of-affairs paved the road to a third attack in 1185... Ouestion: When did the Normans attack Dyrrachium?

Answer: 1185

Previous Work

- The framework model and primary baseline for comparison we used was the Bidirectional Attention Flow network (BiDAF) [2].
 BiDAF incorporate key contributions: temporally independent
- BiDAF incorporate key contributions: temporally independent attention, bidirectional attention, and flowing attention for each time step
- R-Net [3] included two novel innovations: a gated attention recurrent network and a self matching attention layer

Methods

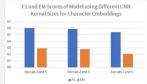
- We used the BiDAF model without any modifications as the baseline model
- Our first approach was to add **self-matching attention** from R-Net
- Next, we added gated attention from R-Net to the BiDAF attention layer
 We incorporated character embeddings using convolution neural networks (CNNs)
 - Tried combinations of 1 to 3 CNNs with kernel sizes of 2, 3, and 5
 Kernel sizes generate embeddings of different subwords of the
- specified length

 We experimented with using a Gated Recurrent Network (GRU) in place of the original LSTM network
- of the original LSTM network

 We also experimented with varying **batch sizes** in training

Experiments

- Experimented with multiple combinations of number of CNNs and kernel sizes used for character embeddings
- character embeddings
 2 CNNs with kernel sizes of
 3 and 5 performed the
 best

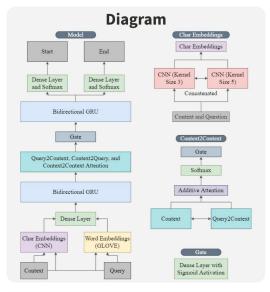


- Batch size differences showed similar results
 There was an increase in
- There was an increase in performance up to a batch size of 72, but decreased at larger sizes

Results

 Our best performing model built on the baseline BiDAF model with gated self attention, 2 CNN character embeddings with kernel sizes of 3 and 5, and trained at a batch size of 72

Model Description	Dev Set F1	Dev Set EM	Test Set F1	Test Set EM
Baseline	60.559	57.049	-	-
+ GRU + Gated Self Attn	62.90	59.40	-	-
+ 1 CNN Char Emb (Kernal 3)	65.55	62.51	-	-
+ 2 CNN Char Emb (Kernals 2 & 3)	65.9	62.78	-	-
+ 2 CNN Char Emb (Kernals 3 & 5)	66.05	62.95	-	-
+ Increase batch size 64 -> 72	66.56	63.32	64.304	60.845
+ Increase batch size 72 -> 80	65.93	62.98	-	-
+ 2 CNN Char Emb (Kernals 2 & 5)	65.38	62.07	-	-
+ 3 CNN Char Emb (Kernals 2 & 3 & 5)	65.20	61.72	-	-



Conclusion

- Putting together the augmentations from R-Net, our finalized model improved upon the baseline on the dev set by ~10%, bring the F1 and EM scores to 66.56 and 63.32 from 60.559 and 57.049 respectively
- There is room to further experiment with hyperparameter tuning to optimize the model
- It would be useful to explore ideas like pointer networks to replace the current output layer and condition the end location on the start location

References

 Konstantin Lopyrev Pranav Rajpurkar, Jian Zhang and Percy Liang. Squad: 100, 000+ questions for machine comprehension of text. 2016.

[2] Ali Farhadi Minjoon Seo, Aniruddha Kembhavi and Hannaneh Hajishirzi. Bidirectional attention flow for machine comprehension. 2016.

[3] Microsoft Research Natural Language Computing Group. R-net: Machine reading comprehension with self-matching networks 2017.