The Right to Remain Plain: Summarization in the Legal Domain

Isabel Gallegos ¹ Kaylee George ¹

Background & Problem

Motivations: Legal jargon and document length can present a barrier to comprehension of legal agreements and protections. Having a tool to simplify and summarize these texts can greatly improve understanding and fairness, as well as mitigate abuse.

Problem: This task is challenging because there is a huge lack of legal domain-specific data. Thus, many popular supervised methods used in broader summarization tasks (e.g. news) aren't effective. Also, previous work has focused on simplification and summarization models independently.

Goals: In this work, we explore the following:

- <u>Summarization</u>: Fine-tune a model for the legal domain-specific task of summarization.
- Generalization: Understand how training on one dataset of one type (e.g. policy agreements) generalizes to other type datasets (e.g. state bills) within the legal domain.
 Simplification: Examine the impact of simplification as a pre- or post-processing step in the specific-domain summarization task.

Datasets

Each dataset provides a full-length document and reference summary for each example. Each dataset was pre-processed with lowercasing, stopword removal, and lemmatization.

Dataset	Train/Dev/Test (Total) Examples	Content			
TLDR	59/13/13 (85)	Software licenses			
TOSDR	252/54/55 (361)	User data and privacy policy agreements			
Billsum		US Congressional and California state bills			
Tiny Billsum	59/13/303 (377)	Subsample train/dev sets of Billsum			

Methods

1. Fine-tuning BART for legal summarization: Fine-tune Facebook's bart-large-cnn [1]. Compare performance to non-neural baselines and bart-large-cnn with no fine-th Data: Divide a dataset into train/validation/test sets with a random 70/15/15 split.

Figure 1. within-dataset fine-tuning and evaluation procedure

Generalization across legal datasets: Evaluate on a different dataset than that used for fine-tuning. Compare to within-dataset performance.
 Data: Divide the fine-tuning dataset into 85/15 train/validation split, and use the test split from within-dataset for the test set.

Methods

Simplification for pre- or post-processing: Apply Facebook's ACCESS simplification model [2] with no fine-tuning to the within-dataset models' input or output.

Figure 3. Simplification and summarization pipelines

The hyperparameters we fine-tuned were: EPOCHS (1, 2, 3, 4), LEARNING_RATE (1e-5, 2e-5, 3e-5), The hyperparameters we fine-tuned were: EMUCHS (1, 2, 3, 4), LEARNING, RATE (1e-3, 2e-3, 3e-3), SEED (161, 224). For each experiment, we chose the optimal parameters: the epoch and learning rate with the highest average ROUGE performance across seeds and the seed with the highest overall ROUGE score.

Results & Analysis

The following tables and figures present results for baseline v. fine-tuned bart-large-cnn performance; vithin-dataset v. across-dataset performance; and qualitative analysis of the impact of dataset size and quality on performance.

		R-1			R-2			R-L		
Summarization Model	TLDR	TOSDR	Billsum	TLDR	TOSDR	Billsum	TLDR	TOSDR	Billsum	
TextRank	17.98	7.83	34.47	1.28	2.59	15.39	16.25	7.7	29.09	
KLSum	18.05	20.24	24.21	3.10	5.17	10.42	17.69	18.76	21.31	
Lead-1	25.66	24.74	1.88	6.98	7.32	0.02	24.19	23.14	1.85	
Lead-K	21.14		32.52	3.39	7.58	15.64	19.68	23.78	30.26	
Random-K	12.36	19.60	28.30	1.28	4.94	11.04	11.77	18.32	25.15	
bart-large-cnn	17.57	18.65	23.51	2.75	3.59	9.79	15.83	17.55	22.36	
Fine-Tuned bart-large-o	nn 15.52	18.08	43.44	1.93	3.21	25.48	14.13	17.62	39.92	

Table 1. ROUGE compares overlapping n-grams between predicted summary and reference. ROUGE F-1 score metrics for baseline methods and bart-large-cnn fine-tuned on TLDR, TOSDR, and Billsum.

Figure 4. ROUGE F-1 scores for across-dataset models, with the within-dataset for comparison

Figure 5. ROUGE F-1 scores for within-dataset, pre-simplified, and post-simplified.

Results & Analysis

- The within-dataset models trained on TLDR and TOSDR were comparable or worse the all baselines, but the Billsum model improved performance, with a ROUGE F-1 score on average 9.4 points higher than the best baseline for R-1, R-2, and R-L (Table 1).
- average 7-4 points ingue than the dest baseline for NE, NZ, and NE (radie 1).

 The across-dataset-billsungeneralized well to all datasets, and the across-dataset-todar models performed comparably across a datasets and to the TOSDR and TLDR within-dataset models (Figure 4).

 Post-prosessing simplification only marginally decreased performance (Figure 5), and FKGL (readability) scores improved regardless of whether simplification is applied as a pre- or post-processing simplification size for Table 2.
- post-processing step (Table 2).
- While the training set size impacts performance, it does not entirely explain the gap between Billsum and the smaller datasets. Dataset quality matters, with a weak trend observed between the quality of reference summaries and the prediction quality (Figures 6

		Origina	l	pre	pre-simplified			post-simplified			
Metric TLE	TLDR	TOSDR	Billsum	TLDR	TOSDR	Billsum	TLDR	TOSDR	Billsum		
FKGL	14.11	12.65	5.48	16.15	17.98	10.12	16.51	16.61	12.92		

Table 2. FKGL measures readability to evaluate simplification. FKGL metrics for ACCESS simplification as a pre-

Conclusions

- Our fine-tuned bart-large-cnn model outperforms baselines by a significant margin for Billsum, but not TLDR and TOSDR. These results highlight the importance of having quality datasets in specific domains, both in length and prose.
- datasets in specific contains, bour in eight and prose.

 For domain-specific tasks, our results suggest that generalization across datasets within a specific domain are within reason to performance within datasets which can help overcome the challenge of lack of data.

 Our prellimary results suggest that simplification as a post-processing step seems promising for preserving ROGUE accuracy and increasing readability.

Notable References

[1] "Facebook/bart-large-cnn" https://huggingface.co/facebook/bart-large-cnn.
[2] L. Martin, B. Sagot, É. de la Clergerie, and A. Bordes, "Controllable sentence simplification," CoRR, vol. abs/1910.02677, 2019.