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Problem

e The majority of baseball prospects do not make it to the major leagues
e Essential task: to effectively identify talent in the prospect pool
e We aim to implement an effective pre-trained and fine-tuned deep learning
model to predict whether a baseball prospect will have a major league
career, given scouting reports written on the player.
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Background

Alabeled scouting report dataset and simple baselines on the binary classification
task were provided by Jacob Danovitch and are shown in Figure 1b:
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The main issues we found with existing modeling approaches are: small dataset,
class imbalance, niche domain.

The goal of our project is to address these issues with a three-pronged approach:
1) Data augmentation

2) Domain-adaptive pre-training (DAPT) and task-adaptive pre-training (TAPT)
3) Mixture of Experts (MOE)

We propose a mixture of hierarchical unified neural domain experts (MHUNDE) as
think tanks, where each “expert” is trained with domain-adaptive pretraining
(DAPT) or task-adaptive pretraining (TAPT) on a BERT base.

Methods
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(51% improvement in F1) — suggests sentence order does not matter

Pretraining on unlabeled scouting data (TAPT > DAPT) — scouting reports
& contain highly specialized jargon and patterns not captured in general
articles

Mix-Up is an ineffective strategy for scouting report data

® 0.58% reduction in accuracy and only 4.14% improvement in F1 from
unaugmented dataset

Minimal effect on performance — scouting reports seem to have little in
common with each other

Tends to be recall-biased (recall > 0.9 for all models)

Mixture Of Hierarchical Experts Catches More Successes

o Recall increase by 3.4% — optimization for finding all potential successful
players, ensuring that we aren’t missing out on any successes
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