Exploring Subword Level Embeddings for the SQUAD Dataset

Theo Culhane tculhane@stanford.edu

* lalso tried combining the character and subword embeddings,
after they were each processed by a CNN, using a multi-layer
perceptron

 Finally, | experimented with using an unfrozen version of the
word embeddings concatenated with a frozen version

Since | did the default final project, | am working on solving the
SQUAD problem, which is answering reading comprehension
questions for a paragraph of context or determining if the question
cannot be answered given the context. Though SQUAD is very well
studied, and so it was unlikely | would be able to make any
significant contributions, it serves as a good framework for
considering issues in question answering as a whole.

Experiments

Background

* SQuAD is very well studied, and the best models are
consistently massive pretrained models that would be far larger
than the scope of a single class project

* Using a slightly outdated model, BiDAF, that uses LSTMs instead
of the current state-of-the-art, which is transformers

Methods

* The base BiDAF model we were given only includes word
embeddings in the input layer
* ladded in character level embeddings and subword level
embeddings
* For character level embeddings, | used a CNN to process the
embeddings for all experiments
* Two different ways of using the CNN were tested
* In one method, all embeddings were concatenated into one
long embedding, and then a CNN was run over the result
* Inthe other method, a CNN was run over each embedding
separately, and then the result was max-pooled
* For subword, two methods were tried
* In the first, all subword embeddings were concatenated and
used directly
* Inthe second, | used a similar CNN structure as the second
character embedding methd

Analysis

* Subword level embeddings appear to have slightly overfitted
the training data, as can be seen by how NLL on the dev set
begins to increase after around 1M iterations, whereas with the
baseline and character level embeddings NLL on the dev set was
mostly stable once it reached its minimum

* Unfreezing the word level embeddings also appears to have
induced some overfitting, which is apparent in the shape of the
NLL on the dev set with unfrozen word embeddings in both
graphs

Stanford
€5229

The models with no subword embeddings ended up performing
slightly better on average on the dev set than the ones with
subword embeddings, possibly due to the overfitting

The experiment that included no character embeddings and
only subword embeddings overfit the least out of all of the
subword level embedding experiments, which seems to indicate
that the issue of overfitting at least partially stems from
subword and character level embeddings duplicating some
information

The model that is about tied for the worst overfitting was one in
which subword embeddings were used directly, instead of
processed through a CNN, which indicates that the CNN
alleviates some of the overfitting/forces some sort of
summarization.

Conclusion

The more complex models ended up suffering quite a bit from
overfitting, with an almost perfectly consistent correlation
between complexity and overfitting

Finding a way to more efficiently summarize all of the
embeddings together early on may help to stop some of the
overfitting, which would probably make the model stronger

References

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh

Hajishirzi. Bidirectional attention flow for machine
comprehension. arXiv preprint arXiv:1611.01603, 2016.

Yoon Kim. Convolutional neural networks for sentence

classification. CoRR, abs/1408.5882, 2014.

