

IntrospectQA: Building Self-reflecting, Consistent Question Answering Models

Maya Srikanth, Rachael Wang, Mentor: Eric Mitchell Department of Computer Science, Stanford University

+1% avg

Motivation

- · Large pretrained language models excel on a variety of NLP tasks, but often suffer from a fundamental weakness: logical inconsistency
- Example of logical inconsistency:
- Is the apple a fruit? Yes.
- Is fruit a plant? Yes. Is apple a plant? No

LOGICAL CONSISTENCY DEFINITION
If an LM assigns true to X and Y,
and X \(\Lambda \) Y => Z, then the
LM should assign true to Z.

- Can we use past predictions and NLI model output to build a self-reflecting, consistent pretrained QA model?
- Our approach:
 - Augmenting a pre-trained QA model with an external memory for storing past model prediction
 - Integrate supervisory signals from a large pretrained NLI model to encourage consistency between past and future QA model
 - Evaluate model with adversarially sampled batches to increase conflict probability

Background

- Existing approaches for enforcing logical consistency rely on constraint solving algorithms like MAXSAT, which operate on **hand-engineered** constraint graphs and are confined to a finite set of entities and facts

 BeliefBank[1] adds a novel memory layer on top of pretrained T5
 - Macaw QA model to track model beliefs over time and modify raw PTLM answers to improve consistency

CONSTRAINT DEFINITION A constraint comes in two forms:

1. positive implications: X = T (true)

"X is a dog.T → "X has a tail.".T A is a dog. 1 → X has a tall. 1 2. mutual exclusivities: pair with X = F (false) "X is a dog".T → "X is a bird".F "X is a bird".T → "X is a dog".F This entity cannot be both a dog and a bird A constraint is comprised of ${\bf condition} \to {\bf conclusion}$

DATASETWe used the BeliefBank dataset of 85 entities, 4998 facts and 12,147 constraints. For this experiment, we use only questions that align with some constraint, resulting in subset of \sim 5500 questions.

Methods

RELATION → QUESTION + ANSWER PREPROCESSING

IsA: albatross, (IsA, bird: yes) →
Q. Is an albatross a bird? A. Yes.

HasA: albatross, (HasA, feathers: yes) →
Q. Does an albatross have feathers? A. Yes.

HasPart: albatross, (HasPart, face; yes) →
Q. Does an albatross have a face? A. Yes

CapableOf: albatross, (CapableOf, fight for life: yes) →
Q. Can an albatross fight for life? A. Yes.

HasProperty; albatross, (HasProperty, alive: yes) →
Q. Is an albatross alive? A. Yes.

CONSISTENCY DEFINITION Define a constraint c_i as a 5-tuple of the form $(s_i.l_i \rightarrow s_j.l_j, w_i)$, where s_i, s_j are sentences $\in S$, $l_i, l_j \in True(T)$, False(F), and w_i denotes the weight of the constraint c_i . $\tau = \frac{|\{c_i|\neg(s_i.l_i \rightarrow s_j.l_j)\}|}{|c_i|s_i.l_i|}$

 Consistency (in words): the fraction of constraints whose condition is believe, but whose conclusion is not

ALGORITHM 2: NLI Strategy 1

- Compute latest batch of predictions with $\hat{y}=\mathbf{QA}$ model $(x)=argmax_yp(y|x)$ Add latest batch (x,\hat{y}) to model memory
- revised_predictions $\leftarrow []$

For each hypothesis, hyp_pred in model_memory: max_contr, max_entail ← [], [] For each premise, prem_pred in model_memory:

hyp_NLI ← format (hypothesis, hyp_pred) into a declarative sentence

prem.NLI \leftarrow format (premise, prem.pred) into a declarative sentence contr_logprob, neutral_logprob, entail_logprob \leftarrow append **NLI_model**(prem_NLI,

 $\begin{array}{l} \text{max_contr} \leftarrow \text{contr_logprob} \geq \text{-}0.0015 \\ \text{max_entail} \leftarrow \text{entail_logprob} \geq \text{-}0.0015 \\ \text{If len(max_entail)} < \text{len(max_contr)}: \end{array}$

 $y_{new} \leftarrow \neg \text{ hyp-pred}$

 $y_{new} \leftarrow \text{hyp_pred}$ revised_predictions.append (y_{new}) return revised_predictions

+1.6% avg F1

+2.6% avg

الله الله

Experiments & Analysis

We evaluate whether our method can outperform a Macaw QA baseline on BeliefBank[1] yes/no questions across a variety of configurations (# entities, # batches, batch size), in a streaming setting.

#1.6 entities (at least 100 questions each), 6 batches of size 20

#2. 11 entities (at least 70 questions each), 5 batches of size 13

#3. 25 entities (at least 65 questions each), 5 batches of size 12 +1.3% avg F1 +2.1% avg

+2.4% avg F1 +3.7% avg

#5. 74 entities (at least 50 questions each), 5 batches of size 10

- IntrospectOA can boost performance (F1, consistency) in a streaming setting across a variety of BeliefBank topics without
- Other considerations: sensitivity to threshold, performance on specific entities may vary

 Our baselines & NLI strategy are not directly comparable to
- related work[1]: (i) our baseline is significantly better; (ii) differences in eval data (we focus only on constraints); (iii) differences in batch sampling (we use conflict batching)
 - Noisy comparison: IntrospectQA outperforms BeliefBank F1 accuracy (their best-performing model achieves F1 86.6)

Conclusion

- IntrospectQA performance suggests that augmenting a QA model with NLI model + model memory can improve logical consistency and F1
- accuracy in a **streaming setting** on **any topic**IntropectQA is a **promising substitute** for MaxSAT solver in scenarios where a constraint graph is not available for topics of interest
- Future steps: improve strategies, extend method to more complex NLP tasks (QA, dialogue, etc)

References

[1] Nora Kassner, Oyvind Tafjord, Hinrich Schütze, and Peter Clark. Beliefbanle: Adding memory to a pre-trained language model for a systematic notion of belief, 2021.

[2] Tha Li, Vieke, Ghuy, Mantrye, Mehn, and Vieke Srikman: A logic-driven framework for consistency of neural models. CoRR, abs/1909.00126, 2019.

[3] Oyvind Tafjord and Peter Clark. General-purpose question-answering with macray, 2021