Chest X-Ray Report Generation from Chest-X Ray Images

Esin Darici Haritaoglu | Aleksandr Timashov | Matthew Tan March 14th, 2022 (Alumni Center in McCaw Hall, CS224n)

Problem

The automatic **generation of** highly clinically accurate **radiology reports** from Chest X-Ray images could **improve clinical outcomes** by reducing radiologist workload, prioritizing severe cases, and augmenting existing radiograph processing pipelines.

Techniques

- Template matching. It is too restricted method, we did not consider it.
- Retrieval-based. Baseline method. Use K tags from most similar images.
- Encoder-Decoder Generative model;
 There are a lot of things to try. It is our main method.

Takeaways

- Providing image representation and pathological probability outputs to encoder improves the performance
- Joint loss helps significantly

Literature

- WCL: Cluster reports with labels for contrastive loss.
- IFCC: Combine factual metric loss with a language model loss and an NLG loss.

Metrics

- NLG metric BLEU doesn't show Clinical Efficacy (CE).
- Compare pathology labels from original and generated text for CE metrics.
- Baseline method uses tag Retrieval from corpus of ground truth clinical tags.

Data & Experiments

- IU X-Ray Frontal images, reports and pathology labels (1952 for training, and 488 for testing)
- Experiment with/out pathological probability outputs
- Experiment with/out contrastive loss

Results						
Dataset	Best Model from the paper	NLG Metrics		CE Metrics		
		BLEU-1	BLEU-4	Precision	Recall	F1
Mimic-Cxr	IFCC	-	11.1	46.0*	72.9*	56.4*
	WCL	37.3	10.7	38.5**	27.4**	29.4**
	Ours	In progress				
IU X ray	Retrieval	0.78 Percent correct tags generated				
	R2Gen	47.0	16.5			
	CMN	47.5	17.0			
	Ours	27.7	2.0			

^{*}The micro average of accuracy, precision, recall, and F1 scores are calculated over 5 observations for: atelectasis, cardiomegaly, consolidation, edema, and pleural effusion

Future Work

- Train and validate on a full-size MIMIC-CXR dataset. (it is not possible in project time due to limited computational resources)
- Experiment with model architectures for pathological probabilities class predictions.
- Experiment with different architectures for generation based approach.
- Experiment more with joint loss functions, including contrastive loss functions;

^{**} It is not explicitly stated but we concluded that WCL results are macro average over all 14 observations - both results use CheXpert (not CheXbert)