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Low Resource Language Challenge:
Many languages lack tagged or processable data to train or even fine-tune models
for specific tasks.

Linguistic Transfer Question:
Can we fine-tune a model for a task in a similar language to work for a low resource
language?
Idea:
- Fine-tune multilingual models using few-shot learning:
- Training data from a high-resource related language
- Validation and testing data in the target language
- Compare performance to models finetuned with target language training data.

Why Urdu to Model the Problem?

* Morphological richness with ambiguous language composition
No capitalization
Script (typological) vs. Vocabulary (morphological) Question

« Indic language and massive shared vocabulary with Hindi
 Arabic/Farsi derived Script
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Background

mBERT: Multilingual BERT
- SoTA language model pretrained on monolingual corpora of 104 languages
- Suitable for typological transfer and morphological transfer

IndicBERT: Indic Language multilingual ALBERT
- 12 languages (11 Indic and Indian English)
- Modified hyperparameters with smaller model

Data: WikiANN Named Entity Recognition Urdu Data
- used in IndicGLUE evaluation of both models
- 3tags:

- Person

- Organization

- Location
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IndicBERT Urdu

* mMBERT has better distributive attention
* Final 2 layers are instrumental to performance dropoff

« Intermediate attention loses spread with transfer learning
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Urdu NER Model Evaluation for mBERT and IndicBERT
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mBERT MBERT Arabic mBERT Hindi
FineTuned Transfer Transfer
* IndicBERT — no Arabic Alphabet
* Morphological Similarities — Higher
Accuracy « Transfer Fine-Tuning Does not
« Typological Similarities — Higher f1 Approach

Potential Causes: Architectural Differences
RT

Difference

IndicBERT  IndicBERT  IndicBERT
FineTuned  Arabic Transfer Hindi Transfer

« Direct Fine-Tuning Converges within
7 epochs

Dropout 0.1

0 dropout caters to sequence classification and
overfits to training language

Model Size | BERT ALBERT ALBERT has 9x fewer parameters and 6x fewer
embedding layers

Embeddings |104 langs |12 langs IndicBERT has no unit embeddings for the Arabic
Alphabet

Tokenizer WordPiece iece iece: the li of the training
data.

SentencePiece: pair frequency.
Wordpiece had higher rate of merges.

Insights on Cross-Lingual Transfer NER

Token Classification — relies on mix of context and character embeddings
Attention — final layers dictate sequential units

Typological similarities dominate efficacy

Blocks Frozen — Model performs better finetuning all layers rather than just
the classifier.

Early Stopping — In transfer learning, the gradient fluctuates largely so early
stopping ends training prior to the model’s optimal performance.

1. Pretrained Roberta — UrBERTo from scratch (without compute
limitations)
2. Mixed few-shot transfer learning (typological + morphological)



