Insemble: A Shared-Parameter Ensembling Technique for Question-Answering

Justin Lim Luke Hansen

Computer Science, Stanford

Goals and Motivations

Experiments and Results

Analysis

Goals:

= Improve upon BiDAF's performance on a reading comprehension task with
modifications such as using a GRU RNN, character-level embeddings,
self-attention encoder, and using a QANet model.

= Create a model inspired by the Intra-Ensemble neural network (an end-to-end
ensemble strategy with submodels which share some parameters) that uses
our best performing model as a submodel

= Explore this model's effectiveness, and investigate how performance scales
with number of parameters.

Motivations: Ensembling is effective but significantly increases number of pa-
rameters. How can we get the performance benefits of ensembling, with a less
significant increase in parameter size?

Approach

* Insemble: a language processing architecture that was heavily inspired by the layer sharing
technique proposed by the Intra-ensemble paper.

= Insemble has three submodels, with the first and second model sharing parameters for the
first encoder block and the first and third model sharing parameters for the second encoder
block.

= The submodels will use slightly different hyper-parameters and architectural components to
increase the diversity of representations captured by each submodel.

Insemble will use a traditional QA architecture as a submodel. We experimented with the follow-
ing candidate submodels:

BiDAF: Baseline BiDAF model provided by CS224n class. Does not include character-level
embeddings

GRU and Character Embeddings: Replaced the Bi-directional LSTM with GRU (Gated
Recurrent Unit).

Self-Attention Encoder: replaced the first encoder layer of the BIDAF model with a
self-attention layer that adds context-to-context attention and query-to-query attention
QANet: new model that discards the recurrent concept of BiDAF. Uses convolutions and
multi-headed self-attention as encoder blocks.

N

o

IS

We will deploy Insemble on a reading comprehension task using the SQUAD 2.0 dataset (a col-
lection of context, question, answer triples).

After training the 4 candidate models we will:

= Evaluate each model's EM, F1, AvnA scores
* Choose best models for Insemble

= Diversify submodels through using different hyper-parameters, and architectures within the
encoder blocks.

= Trained candidate submodels until losses, F1, and EM scores plateaued

= Trained QANet with a learning rate of 0.1, hidden size of 100, drop probability of 0.1

= All other submodels were trained with a learning rate of 0.5, hidden size of 100, drop
probability of 0.2

Figure 1. AVNA, EM, F1, and NLL training trajectories: GRU (grey), self attention encoder (pink), and QANet (red
and blue)

Our 4 submodel candidates achieved the following EM, F1, and AvNA scores:

Model NLL F1 EM AVNA
BiDAF 3.31 60.18 56.53 67.23
GRU 3.11 60.76 57.22 67.47

GRU + Char-Embed 270 6432 611 711
Self-Attention Encoder 2.65 62.97 60.01 69.06
QANet 2.75 63.63 60.85 70.98

Table 1. Comparison of submodel performance on dev Set

= Model with GRU encoder performed best so chose it as submodel

= For our Insemble, the third submodel used an LSTM for its first encoder, increasing submodel
diversity. Trained our Insemble with different hidden state sizes

* As a control, one of the submodels (225-GRU) was trained with a similar number of
parameters as smallest Insemble network.

Model NLL F1 EM AVNA
GRU-225 (included as a control) 2.92 61.34 57.67 70.14

Insemble-75 2.76 64.87 61.84 70.14
Insemble-100 2.73 66.59 63.59 71.35
Insemble-150 2.93 66.03 62.95 71.27

Table 2. Comparison of Insemble models with different number of parameters (number to to the left of Insemble
represents hidden size value; and performance of a submodel with a comparable number of parameters.

The Insemble model with a hidden size of 100 achieved the best dev set score, so we ran it on
the test set. It achieved scores 65.46 (F1) and 62.40 (EM).

= Using GRU RNN increase performance and decreased training time.

= Using character-level embeddings improved the model's handling of unencountered words.

= QAnet had an unexpectedly low performance. Given the limited the credit count and the
extensive time needed to train the QANet (14 hours), we decided to focus on testing the
Insemble model instead of debugging the QANEet.

= Smallest Insemble model allowed for better representations of the data than using a single
model with a comparable number of parameters (This single model quickly overfit the data).

= Increasing the number of model parameters increased the performance of the model, to an
extent- increasing the hidden size from 75 to 100 increased the F1 and EM scores by 1.72
and 1.75, respectively.

= However increasing the hidden size from 100 to 150 hurt the models performance, lowering
the F1 and EM scores by 0.56 and 0.64, respectively. We expect this was due to the model's
increased representational capacity not being utilized because there was an insufficient
amount of data.

Furthermore, we split the Insemble results by question type (How, What, Why, Which, Who,
Where, When, Other). All three models performed the best on "when” questions and performed
poorly on "how” and "why” questions. This observation makes sense intuitively, because "when”
questions often have more straightforward answers than "how" and "why” questions (Figure 2) All
models perform poorly on "other” questions, which seems to be a direct result of the low number
of training examples in this category.

F1 on Hidden Sizes, 75, 100, 150

W hiddensize7s [hidden size 100 1 hidden size 150

how what why whch who whore when oher

Queston Type

Figure 2. Insemble score by question type

Conclusion

= The following strategies performed better than a vanilla BIDAF model: replacing the LSTM
RNN with GRU RNN; including character embeddings; using self-attention instead of the
LSTM RNN; and using QANet model instead of the BIDAF model.

* Insemble performed better than any of the models individually, even with models with
approximately equal parameter sizes.

= Insemble's performance improved with more parameters to a certain extent. After increasing
the size too much, performance began to decrease.

