Reproduce Simple QANet on SQuUAD 2.0

Zhengqi Zhu stevezhu@stanford.edu

Stanford Center for Performance Development

BACKGROUND:

Recently, there is a growing interest in the tasks of machine reading
comprehension and automated question answering. By the time the QANet
paper was published, most of the end-to-end machine-reading and question
answering models are primarily based on two key ingredients: recurrent neural
networks (RNNs) and attention mechanisms. However, despite the success of
accuracy of these models, they are comparatively slow to train and inference
due to their recurrent nature. This weakness leads to a high turnaround time
for i rtation and limits from rapid iteration. Also, it
prevents the models from being used for larger datasets and being deployed
in real-time machine comprehension systems applications.

Southern_California
The Stanford Question Answering Dataset

Figure 1: example dataset

PROBLEM:

The main goal of this project is to successfully implement QANet with PyTorch
and build a Question-Answering system using this model. Then achieve a
higher EM and F1 score on the SQUAD 2.0 dataset than the given baseline
model using the implemented model. The secondary goal is to apply a
masking mechanism on the attention layer, modify the model size, the number
of layers, or other improvements to analyze if these changes could make the
implemented model performs better.

METHODS: QANET

As described in the QANet paper, the higher-level architecture contains

5 layers:

1. Input Embedding Layer: The embedding of each word w is obtained by
concatenating its word embedding and character embedding. The word
embedding is fixed during training and initialized from the p1 = 300
dimensional pre-trained GloVe word vectors. All the out-of-vocabulary
words are mapped to a <UNK> token, whose embedding is trainable with
random initialization. To obtain the character embedding, each character
is represented as a trainable vector of p2 = 200 dimensions. The word
length is truncated or padded to 16. The output from this layer of a word x
is [xw; xc] ERNp1+p2), xw is the word embedding and xc is the
convolution output of character embedding of x.

2. Embedding Encoder Layer: The structure of the encoder layer is [n x
convolution-layer + self-attention-layer + feed-forward-layer]. The
convolution layer has a kernel size of 7, d = 128 filters, and each block
has 3 convolution layers. The self-attention layer adopts the multi-head
attention mechanism. The number of heads is 8. The total number of
encoder blocks is 1. The output of this layer is d = 128 dimensions.

3.

Context-Query Attention Layer: C denotes the encoded context and Q denotes

the encoded query. First compute the similarities between each pair of context and
query words, rendering a similarity matrix S eR*(nxm). Then apply softmax function to
each row of S to get a matrix’S. The context-to-query attention is computed as A =S
QT €RA(nxd). The query-to-context attention is computed as B =S - 7S"T - CAT ,
where ™S is column normalized matrix of S computed by softmax function.

Model Encoder Layer: The input of this layer at each position is [c,a,c ©a,c Ob][4],
where a and b are respectively a row of attention matrix A and B. The number of
convolution-layer is 2 and total number of blocks are 5. Other parameters are the same
as the Embedding Encoder Layer.

Output Layer: Each example in SQUAD is labeled with a span in the context
containing the answer. The probabilities of the starting and ending position are modeled
asp1 = softmax(W1[MO0; M1]), p2 = softmax(W2[MO0; M2]), where W1 and W2 are

two trainable variables and MO, M1, M2 are the outputs of the three model encoders
from button to top. Compute the product of its start position and end position
probabilities to get the score. Finally, the objective function is defined as the negative
sum of the log probabilities of the predicted distributions indexed by true start and end
indices, averaged over all the training examples: L(8) = —%Zf’[log (p;‘:) + log(p;;)]
where y}and y? are respectively the ground truth starting and ending position of
example i. At inference time, the predicted span (s,e) is chosen such that p1sp2e is
maximized and s < e.

Model One Encoder
Block

Ena Provaoity

E Posion Encodng )

Contex Question

Figure 2: QANet model

EXPERIMENT:

Data: As described in the default project handout, the dataset is SQUAD 2.0. This
dataset was being pre-processed as given and split into three parts: train, dev, and
test. The train set contains 129,941 examples, the dev set contains 6078 examples,
and the test set contains 5915 examples.

Evaluation method: As introduced in the default project handout, the evaluation
metrics are EM and F1 scores. Exact Match is a binary measure (i.e. true/false) of
whether the system output matches the ground truth answer exactly. F1 is a less
strict metric — it is the harmonic mean of precision and recall.

Experimental details: For hardware, | used Google ColLab NVIDIA Tesla P100 GPU with
16 GB memory. Due to the limitation of GPU memory, | have to decrease the number of
blocks of each encoder layer. About 12.58 GB was used in the experiment. The epoch
number is set to 15 and batch size of 16. The training time is around 15 hours to get the
result. The learning rate is 0.5 as default.

Results: As attached below, the blue line refers to QANet implemented, and the orange
line refers to the baseline model. After 15 epochs, our QANet model got EM 63.855 and F1
67.675 on dev set and the baseline, after 30 epochs, got EM 56.02 and F1 59.57. QANet
model also got EM 62.418 and F1 65.749 on test set.

dev/AVNA
tag: dev/AVNA

dev/NLL
tag: dew/NLL.

Figure 3: Results
Analysis:
The result shown above is not as good as the QANet paper. Excepting the limitation of
model size, the paper also used a data augment skill that translates the dataset into
French and then translates it back. In this way, the original dataset would be doubled. In
this project, | did not make any improvement on the input, and that could be future work.

Conclusion:

This project successfully reproduced a simple QANet, and the performance has
achieved the target that is higher than the baseline model. However, the EM and F1
score is still not as expected as in the paper. Also, in the paper, the researchers
highlighted their comparatively short training time but during implementation, the training
time is not shortened as expected. This may be both a model implementation and
hardware (GPU) issue, and | still need to do more research on this area.

References:
1. Minh-Thang Luong Rui Zhao Kai Chen Mohammad Norouzi Adams Wei Yu,
David Dohan and Quoc V Le. Qanet: Combining local convolution with global
If-attention for reading p 1sion. In International Conference on Learning
Representations (ICLR), 2018.
2. Percy Liang Pranav Rajpurkar, Robin Jia. Know what you don’t know:
u i for squad. In iation for Computational Linguistics

(ACL), 2018



