Lossless Neural Text Compression

Kasey Luo, Michael Herrera {kaseyluo, herrerx} @stanford.edu

Introduction

Problem + Research Question

- Data is being generated at a rapid rate. How can we more efficiently compress text data?
- Can transformers be leveraged to more efficiently compress text?

Background

- Existing RNN + encoding approaches for character-based text compression
- Existing NN approaches for image compression

Methods

Model:

- · Pretrained GPT2 model, finetuned on text generation task on the wikitext2 dataset.
- · Hyperparameters: learning rate of 2e-05, training and evaluation batch size of 8, Adam optimizer

Variable-Length Integer Encoding

· Compresses fixed-length integers into variable-length integers by storing smaller numbers with fewer bits

Arithmetic Encoding

· Frequently used characters are stored with fewer bits and less frequent characters stored with more bits

Experiments & Results

Compression Ratio Histogram (Uncompressed/Compressed)

Compression Ratio Table (Uncompressed/Compressed)

	Mean	Min	Max	STD
Ggzip_Baseline	2.02	1.51	2.61	0.16
Arith_Baseline	2.20	1.64	2.66	0.15
Neural_Varint	4.44	3.22	5.49	0.32
Neural_Arith	4.52	3.05	5.63	0.44

Window Size vs Compression Ratio

Window Size vs Runtime

Discussion

Analysis

- Our results demonstrate the inherent trade-off between compression ratio and compression speed.
- While neural compression approaches are superior in compression ratio, they are inferior in compression speed.
- · Smaller windows lead to far better runtime with only negligible reduction in compression ratio
- Compression ratio consistent across file sizes

Future Improvements

- · Runtime:
- Synthesizer attention
- Fewer layers
- Improved batching
- Compression ratio
- Fine-tune with alternative loss term
- Use 4-bit var-int

References

[1] M. Goval, K. Tatwawadi, S. Chandak, and I. Ochoa, "DeepZip: Lossless Data

Recurrent Neural Networks, "ArXiv181108162 Cs Eess Q-Bio, Nov. 2018, Accessed: Feb. 07, 2022.

[2] I. H. Witten, R. M. Neal, and J. G. Cleary, "Arithmetic Coding for Data Compression," Commun. ACM, vol. 30, no. 6, p. 21, 1987.