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Problem

* Motivating Problem: Use reinforcement learning to perform non-greedy
decoding for transition-based parsers

* Dependency relationships can improve performance on a variety of NLP
tasks and so improving dependency parsing is important

* Supervised methods perform greedy decoding
* RLcould be useful because it considers future reward and thus their
policies are non-greedy.

Background

Problem Setup: Create an RL Agent that predicts the next move in a
transition-based dependency parser and aims to maximize the unlabeled
attachment score (UAS)

A Fast and Accurate Dependency Parser Using Neural Networks
(Chen and Manning [1], 2014): The authors use a neural network to
determine the next transition

Dependency Parsing with Deep Reinforcement Learning (Shen et al. [2],
2016): The authors aim to build a reinforcement-based dependency
parser to perform non-greedy decoding.

Methods

« Transition-based dependency parsing aims to create a
dependency structure for a sentence. We specifically used the
arc standard transition system.

* We create a parser environment for our RL setup
 Is possible because we can frame the shift-reduce parser as
a Markov Decision Process (MDP)
* We must frame the environment as a “game” with
a reward function that the agent aims
to maximize

Actor Critic
actorn Framework
(POLICY)

+ Tested two actor-critic RL algorithms on the
parser environment: A2C and PPO
 Actor-critic methods have a policy
network which decides actions and
a value network to determine the
expected future reward

* A2Cand PPO differ in how the loss is
calculated
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Experimental Setup

« Task: Used the English Penn Treebank (PTB) dataset to load in examples to
the environment
 Agent returns an action based on current parse of sentence

Policy Loss

Metric: Unlabeled Attachment Score (UAS) — the percentage of tokens that
have the correct head

The policy network for the A2C and PPO parsers were both initialized to

match the parameters of neural dependency parser from Chen and

Manning

* Also trained an A2C model w/o supervised pretraining to determine if
better than random policy (UAS = 12.90)

Results

Accuracy on the test set for the A2C model
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) Accuracy on the test set for the PPO model A2C* 89.19
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* Indicates that model
was pretrained with
supervised weights

Test Accuracy
o o © o o
5 @ = = @
2 % 8 8 8

°
&

000 025 050 075 100 125

Training Timestep (in millions)

175 2.00

|_Model | Avg US|

Loss for Policy and Value Networks during A2C Training
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Analysis

« Policy loss for pretrained A2C much smaller than policy loss of non-pretrained
* Value loss for pretrained A2C initially much higher as critic network must catch
up to pretrained policy network

* The RL models often performs better after an initial error as shown below:
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Conclusions

* The A2C and PPO models w/ pretraining performed slightly better than the
supervised model on the test data

* Initializing the parameters with a pretrained supervised model was critical for
the RL model to properly explore the space and learn
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