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Introduction

Experiments

Analysis (cont.)

We build a question answering (QA) system and apply it on the Stanford Question Answering
Dataset (SQUAD 2.0), seeking to achieve high accuracy scores (EM, F1). Given a context para-
graph and a question, we want the system to output a contiguous span from the context para-
graph that is the answer to the question. We undertook to build Smart Chunk Reader (SCR), a
model based on Dynamic Chunk Reader (DCR)[2] and Stochastic Answer Network (SAN)[1]. SCR
seeks to augment DCR with an intermediary "candidate chunk” neural model that establishes a
probability distribution over what chunks (of any size) could comprise the answer. We chose
to implement Stochastic Answer Network (SAN) as our chief candidate chunk selection model
due to its multi-step construction of the final answer span distribution coupled with its use of
stochastic prediction dropout.

Background

In the present context, transformer-based models achieve superior performance. QANet, for
example, moved away from the the use of recurrent networks, and relies upon convolution, self-
attention mechanisms, and achieved the best published F1 score for its time. However, rather
than opting for a transformer-based architecture like many of our peers and previous project
teams, we sought to build a model incorporating unique insights that came from approaches
independent from transformers. This drew us to Dynamic Chunk Reader and Stochastic Answer
Network.

= Chunk Representation The model Dynamic Chunk Reader, implements a compelling and
intuitive idea of representing answer candidates as chunks instead of word-level
representations, to make the model aware of subtle differences among candidates.

= Multi-step Reasoning Answer span distributions are generated over T-time steps, the final
probability distribution is a function of the average of the answer span distributions that
remain after applying stochastic dropout.

= Attention Mechanisms Both Dynamic Chunk Reader and Stochastic Answer Network made
use of variants of dot-product style attention methods.

Methods

Our model is primarily an extension of DCR (Dynamic Chunk Recognition), a model architecture
that builds a representation over candidate answer "chunks” of text instead of predicting separate
start-of-answer and end-of-answer probability distributions.

Smart Candidate Generation

The original DCR paper naively generates candidate chunks by enumerating all possible sub-
ranges of the context up to a maximum answer length. However, this is bad for two reasons.

= First, this method involves creating chunk representations over up to O(n?) different
candidates. This results in a very slow runtime of DCR.

= Second, this method is unable to answer questions with long answers correctly. The
original DCR doesn't even enumerate answers that are past a certain length.

We decided to solve both of these problems by extending the DCR architecture with another
step - candidate generation. Instead of naively generating candidates, we first run a candidate
model and choose the top K chunks from the model. Those K chunks are the candidate input
to our DCR model.

To generate our candidates, we decided to use a model called SAN (Stochastic Answer
Networks) because it had very strong K-oracle performance and an interesting architecture.

Our experiments contained testing a set of baselines including DCR, and then combinations of a
candidate model to generate chunks, and a DCR architecture that would rank them.

1. DCR This baseline involved our first direct implementation of DCR with the default hidden
size of 300.
SAN!23. This was our baseline implementation of SAN with a hidden size of 128

. SANS2, A candidate model not tested with DCR - this high performing SAN model took so
much memory that DCR didn’t fit alongside it in RAM
SAN!Z + DCRYY. Once we got SAN working, we paired our SAN candidate model with
DCR,, DCR with an extended feature representation and encoding layer. Due to memory
constraints we had to shrink the hidden size of both SAN and DCR.
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Results
Models F1 EM
DCR baseline 58.60 55.70
SAN128 63.73 60.34
SAN512 65.07 61.84
SCR,SAN128-3  58.24 53.96

SCR, SAN128-20 54.77 51.03

Table 1. Performances of various models on the SQUAD 2.0 development set

We were moderately pleased with SAN performance achieving a peak F1 score of 65.07 and EM
of 61.84. While these results were less performant than the published results in the original SAN
paper, we had no opportunity to utilize contextual embeddings (as was done in the original paper).
We were surprised by the underperformance of our SCR models relative to the DCR baselines.
We were also surprised by how passing more candidates to SCR from SAN is associated with
even poorer F1 performance.

Analysis

Most of our experiments were centered around reducing our two main sources of error: candi-
date selection failures and DCR failures. The only metric we cared about for a candidate was its
K-oracle performance. As long as the correct answer was within the top K, DCR would have a
chance at perfectly answering the question. Reducing any one of these sources of error was easy.
Increasing K, the number of candidates we selected, would drive candidate selection failures low
(often towards < 10%). at the cost of DCR performance as it selected between more candidates.
Decreasing K would increase DCR performance at the cost of more candidate selection failures.
So, we needed to train better SAN candidate models that could achieve very high K-oracle per-
formance for smaller K. Then, we needed to train DCR models on the candidate output of these
SAN models.

Default P

= DCR performed progressively poorly with longer answer lengths with EM dipping as low as
20%. SCR maintained a tighter band of performance across answer lengths.

= Similarly, SCR has less variance in performance across question types, likely due to a tighter
range of possible candidates.

= We see a similar improvement in EM score as K increases across SAN sizes. SAN128 is
slightly better for higher K, so We mainly trained SCR with SAN128.

Interesting Architectural Pieces

While much of the implementation of SCR (Smart Chunk Reader) was basic embeddings, attention,
and LSTMs, we also worked with some more interesting architectural components.
Question-enhanced Passage Word Embedding

This layer augments the embedding of context words with information about the question being
asked, allowing context words to be represented in different ways for different questions.

Let g(-) is a 280-dim single layer neural network.
_ eaplg(GloVe(e;))g(GloVe(qy)))
3 exp(g(GloVe(e))g(GloVelq))

Finally, our initial embedding for a context word is: f(e;) = 3, % 9(GloVe(q;))-
Then, we use a two layer feed forward network FFN to bring the dimension of context and
question words back down to a common size (the question words are never enchanced in this
way)

Jembed(ci) = FFN(3;7i,j9(GloVe(q;)))

Memory Generation

The memory generation seeks to build a question-attended representation of the context through
use of dot-product mechanisms between words and the context/question.

* Given P € R™*" and Q € R¥*™, representations of the passage and questio
We first transform our input with a single layer network. 2 = ReLU(W,P),

= We then take basic attention with dropout. €' = dropout(fut(Q, P)) € R™*"
U = [P;QC] e R%xn

= In addition to our usual features, we also attempt to capture connective attention between
words by taking attention and then dropping the diagonal (all self attention is zeroed out).
0 = Udropgiag(fatt(U, U)

= Finally, we feed our usual and connective features into an LSTM.
M = BiLSTM([U; 0])

respectively.
ReLU(WQ)

Stochastic Answer Module

An initial state is constructed based on question representation ( and is passed through a GRU

with hidden state z;. The answer module will compute over 5 time steps given the state s; and the

memory M. We experimented with expanding each state to include the passage representation

P, but this did not meaningfully improve performance.

* 50 = ¥ softmax(wsQ;)Q;. st = GRU(se—1, z1)

= 2y = ¥, softmax(s;—1 W4 M)M,; Once we have computed s; for all ¢, we can then get our
output distributions.

* P} = softmax(s;Ws M), P? = softmax([st; 33; Pl M;W7 M)

(During training, we dropout 40% of these layers to ensure that no single layer output is necessary
for our model.) Finally, P and P are set to be the averages of our 5 computed distributions.
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