

# SQuAD-ing Up as a Winning Team: Character Embeddings and **Dynamic Coattention Networks**



Kevin Guo (kyguo)<sup>1</sup>, Brandon Kang (bmkang)<sup>1</sup> Department of Computer Science, Stanford University, Stanford, CA1

### Introduction/Background

- Question Answering is a task in the Natural Language Processing community that has received a lot of attention due to its broad range of implications for issues ranging from web search to data analytics.
- Question Answering has further increase in popularity due in part to the robustness and reasoning-based nature of the SQuAD
- We first build upon the given baseline BiDAF model that contains only word-level embeddings by incorporating the Character-Level Embeddings as described in Seo et al. [2]
- We additionally implement Dynamic Coattention and create a model combining character-level embeddings with the Dynamic Coattention Network described in Xiong et al.<sup>[3]</sup>
- We measure the success of our implementations using EM and F1 scores and further experiment upon our models with
- hyperparameter tuning experiments.
  We find our model performs best with the Coattention and Character-Level Embeddings configuration with a learning rate of 0.6 and a dropout probability of 0.15 and associated EM and F1 scores of 59.189 and 62.787, respectively, on the test set.

### Methods

#### 1. Bi-directional Attention Flow (BiDAF) Model



#### 2. Character-Level Embeddings

- Pass preprocessed context/query words through a CNN to produce char embeddings.
- Maxpool, concatenate to word embeddings, pass to Highway Network
- 3. Dynamic Coattention Networks (DCN)



### Results

| Model                               | lr  | dropout | F1    | EM    |
|-------------------------------------|-----|---------|-------|-------|
| Baseline                            | 0.5 | 0.2     | 60.74 | 57.39 |
| Char-level<br>Embs                  | 0.6 | 0.2     | 60.86 | 58.11 |
| Char-level<br>Embs                  | 0.5 | 0.25    | 61.92 | 58.47 |
| Char-level<br>Embs                  | 0.6 | 0.15    | 62.27 | 59.32 |
| Char-level<br>Embs +<br>Coattention | 0.6 | 0.2     | 61.78 | 59.06 |
| Char-level<br>Embs +<br>Coattention | 0.2 | 0.3     | 57.31 | 54.17 |
| Char-level<br>Embs +<br>Coattention | 0.6 | 0.15    | 63.91 | 60.43 |

Fig 1: Hyperparameter Tuning on Dev Set

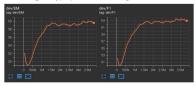



Fig 2: Best Model (Coattention + Char-level Embeddings + Hyperparameter Search) Performance

| Model                                                       | F1     | EM     |
|-------------------------------------------------------------|--------|--------|
| Baseline on Dev                                             | 60.737 | 57.385 |
| Char-Level Embs +<br>Coattention + Tuned<br>Parameter - Dev | 63.914 | 60.427 |
| Char-Level Embs +<br>Coattention + Tuned<br>Params - Test   | 62.704 | 59.138 |

Fig 3: Model Performance (EM and F1 scores)

### Analysis



Model pulled more data than necessary from the context; however, the extra information was also relevant to the ground truth answer.



- Able to pull answer from context despite human labeling error

## **Conclusions**

- Adding character-level embeddings to the baseline BiDAF increased performance.
- Substituting the attention layer in BiDAF with coattention marginally increased performance.
- We were able to improve and achieve higher accuracy after performing a hyperparameter search.
- Our best model achieved an F1 score of 62.704 and an EM score of 59.138 on the test set.
- For future improvements, we are curious to see what would happen with a feedforward model that separates question types.
- We also suggest implementing data augmentation such as Easy Data Augmentation or more types of attention such as self-attention.

# References

[1] Pranav Rajpurkar, Robin Jia, and Percy Liang, Know what you don't know: Unanswerable questions for SQuAD. In Association for Computational Linguistics (ACL), 2018. [2] Mirijoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention flow for machine comprehension, 2016. [3] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question answering. In arXiv, 2018