QAN-et al.: Exploring Extensions on QANet

Timothy Dai, Michelle Qin, Jessica Yu

Problem

Question answering is a significant challenge in the NLP space because it is one of the most effective ways to evaluate a model's understanding of language. In this project, we address a model's ability to produce the answer span of text for a question from the SQuAD 2.0 dataset. We aim to build and improve upon existing end-to-end models for question-answering tasks.

Background

In our project, we investigate the following concepts:

BiDAF Model, Seo et al.

- Introduces the concept of context-query attention
- Recurrent nature → slow & expensive to train

QANet Model, Yu et al.

 Uses convolutional layers to capture the local structure of the text and self-attention to capture the longer term interaction between words, borrowing from Vaswani et al.'s seminal work on transformers

Relative Positional Encodings, Shaw et al., Dai et al.

- Shaw et al. introduces method to encode relative positional information in the self-attention layer
- Dai et al. further develops relative positional encodings in Transformer-XL

Answerability, Aubet et al., Levy et al.

- EQuANt model by Aubet et al. adds an AvNA module to exclusively predict answerability
- Levy et al. predicts no-answer when predicting the prepended out-of-vocabulary (OOV) token

Methods

- 1. Baseline: Seo et al.'s BiDAF with slight modifications
- 2. Our Implementation: QANet described in Yu et al.
- 3. Improvements on Our Vanilla QANet Model:
 - a. QANet with learnable positional encodings
 - b. QANet with an AvNA module*
 - c. QANet with conditioned end predictions *
 - d. QANet with relative positional encodings**
- Assemble an Ensemble: Select high performing models from our repertoire of BiDAF and QANet variants to achieve our highest performing result

Experiments

Model	Dev F1	Dev EM	Dev AvNA
BiDAF (baseline)	61.29	57.86	67.72
BiDAF with character-level embeddings	63.46	60.14	69.82
BiDAF with coattention	56.15	52.60	61.24
QANet	68.95	65.15	75.40
QANet with learnable positional encodings	69.83	66.21	76.07
QANet with relative positional encodings	69.98	66.26	76.39
QANet with AvNA module	68.57	64.95	74.76
QANet with conditioned end predictions	69.08	65.55	75.40
QANet + BiDAF ensemble	72.35	69.43	77.31

Model		Test F1	Test EM
QANet + Bil	DAF ensemble	70.23	67.29

Analysis

Relative Positional Encodings

 Outperforms vanilla QANet on almost all question types, especially "How" questions

Model	Dev F1 by question type						
Model	Who	What	When	Where	How	Why	Other
QANet	71.70	68.76	73.44	66.02	64.90	62.79	64.76
QANet w/ relative positional encs.	71.56	69.71	73.89	66.26	68.69	64.64	66.26

AvNA Module

• QANet is overly cautious in predicting no-answer

Discretization Method	Dev F1	Dev EM	Dev AvNA
AvNA only	66.14	62.09	73.45
AvNA && joint start-end	65.81	61.75	73.13
AvNA joint start-end	68.57	64.95	74.76
Joint start-end only	68.22	64 59	74.42

Learning Positional Encodings

No sequence-length invariance → loss of information

Conclusion

We implement a QANet model and explore extensions, from which we learn that changes in architecture are less important to improving model performance, except when addressing a bottleneck. We create an ensemble of our highest performing models, which achieves 70.23 F1/67.29 EM on the test leaderboard.

^{* =} includes original contributions. Ask us!

^{** =} our best performing model (outside the ensemble)