Abstract

Introduction

R-NET Prime

Nik Caryotakis,! Parker Killion,* J.P. Reilly*

1Department of Computer Science, Stanford University

Approach (cont.)

Stanford
Computer Science

Analysis

Building upon the
Bidirectional Attention Flow
model (BiDAF) and inspired
by R-NET we implemented
R-NET Prime. Featuring
character level embeddings
and a pointer network for an
output layer, R-NET Prime
improves the performance of
the baseline model by using
self attention in addition to
the bidirectional attention
layer in BiDAF. Our version of
self attention is more easily
parallelizable as opposed to
R-NET's, allowing for faster
training. This faster training
allowed us to perform an
ablation study to isolate the
performance contribution of
each R-NET Prime
component, as well as
thorough hyper

parameter tuning.

We evaluate R-NET Prime on
the SQUAD 2.0 dataset, and
achieve an F1 score of 63.67
and EM score of 60.37,
placing our team, Palo Alto
High School, at 42nd on the
CS 224N leaderboard at the
time of writing.

Stanford

University

The SQUAD dataset was developed by Stanford
Researchers and houses a leader board for
models to be compared. In this project, we
investigate R-NET a model that topped the
leaderboard when it was released. The R-NET
utilizes self-attention and we wanted to
investigate how effective self-attention is in
their model and see if we could improve upon
it in our own. Our implementation, R-NET
prime, utilizes character ~ embeddings,
self-attention, and a pointer-network output
layer, in addition to several features from the
given BIiDAF starter code. We describe the
SQUAD task below:

Given: A question, and a context paragraph.
Output: The span of text that answers the
question.

Example:
Question: Why was Tesla returned to
Gospic?
Context: On 24 March 1879, Tesla was
returned to Gospic under police guard for
not having a residence permit. On 17 April
1879, Milutin Tesla died at the age of 60
after contracting an unspecified iliness
(although some sources say that he died of
a stroke). During that year, Tesla taught a
large class of students in his old school,
Higher Real Gymnasium, in Gospic.
Answer: not having a residence permit

Approach

Character-level embeddings are found by taking final
forward hidden
bi-directional recurrent neural network (RNN), which
accepts pre-trained letter embeddings one at a time.
These two states are concatenated together to form a
character-level word embedding, that is then
concatenated with the 300 dimensional GloVE word
vectors given.

and backward states of a

We add a self attention layer and an additional
modeling layer to BiDAF. For self attention, different
from R-NET’s paper, we do not use the output of one
RNN cell as part of a gated input into the next. The
output from this layer is the concatenation of the
original context representation, the attention
weights, and the two multiplied together. This is then
fed into a modeling layer, just as the BiDAF attention
does before it.

Third, we replace the BiDAF output layer with a
Pointer Network (Ptr-Net) [6], continuing to follow

[}

[start Token\
| Probabiliy |
& _4

i

[}

N
End Token)
| Probabity |

1y
|

N
>

¢

Pointer Network

Modeling GRU

L}

Self Attention

T

Modeling GRU

[}

BIDAF Attention

v
% Query Embedding
- 4

Query

[Context

~
(embedding)
S 4

Context

We started by running the baseline model
given to us in the SQUAD starter code which
is a Bidirectional Attention Flow model. We
extend upon this model in three ways:
character-based embeddings, self-attention,
and a pointer network output layer.

the R-NET paper. This network uses attention as a way [

to select input tokens that work best as start/end

indices for our question answering system.

Results
Dev F1
Dropout Hidden Layers LearningRate F1 EM
02 75 05 63.69 6038
03 75 05 64.55 6142
025 85 05 6323 60.07
8 02 100 05 638 60.63

03 100 05 64.12 60.66
05 100 05 5825 553
04 130 05 61.03 5775

train/CSR_LR_0.5_HIDDEN_100_DROP_0.2

train/CSR_LR_0.5_HIDDEN_75_DROP_0.2-01

@ train/CSR_LR_0.5_HIDDEN_75_DROP_0.3-01
train/CSR_LR_0.5_HIDDEN_85_DROP_0.25-02

train/CSR_LR_O.

_HIDDEN_100_DROP_0.3-01
train/CSR_LR_0.5_HIDDEN_100_DROP_0.5-01
O train/CSR_LR_0.5_HIDDEN_130_DROP_0.4-01

We performed an ablation study to analyze
the unique effects and impacts separate
pieces of our R-NET Prime model, and then
to finally determine the effect our faster,
modified attention mechanism had in
comparison to other standard R-NET layers.
We created a naming system for the models
where (B) stands for baseline, (S) stands for
self attention, (C) stands for character
embeddings, and (R) stands for R-NET
output pointer-network. The table below
shows our results:

Model Type Dropout _Hidden Layers _Learning Rate F1 EM
BBB 0.2 100 0.5 60.9:

45796
CBB 02 100 05 6274 5957
BSB 02 100 05 6257 592
BBR 02 100 05 6092 573
CSR 02 100 05 638 60.63
CBB 05 100 05 5676 5371
BSB 05 100 05 6257 592
BBR 05 100 05 5634 5396
CSR 05 100 05 5825 553
CBB 02 75 05 6286 59.6
BSB 02 75 05 612 5784
BBR 02 7 05 6031 57.13
CSR 02 7 05 63.69 6038

Typically character level embeddings outperforms
both self-attention and the pointer network when ran
in isolation. The pointer network and character
embeddings suffer greatly from the higher drop out.
The pointer network appears to only have marginal
increase in our model. Overall, R-NET Prime
framework gains the most from the character level
embeddings as it encodes more information for the
rest of the model to gather from.

References

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrey, and Percy Liang. Squad:
100,000+ questions for machine comprehension of text, 2016.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C.
Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015,

Seo Minjoon, Aniruddha Kembhavi, Ali Farhadi, and Hananneh Hajischrizi.
Bi-directional atten- tion flow for machine comprehension. In International
Conference on Learning Representations, 2017.

Natural Language Computing Group. R-net: Machine reading comprehension
with self-matching networks. May 2017.

Oriol Vinvals, Meire Fortunato, and Navdeep Jaitlv. Pointer networks, 2017.

