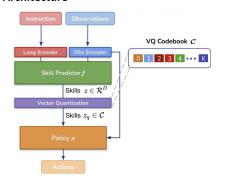
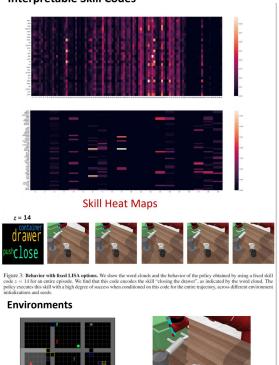

LISA: Learning Interpretable Skill Abstractions from Language

Divyansh Garg


Goal: Enable agents to follow language instructions in complex multi-task environments

LISA: Learn interpretable high-level skills + low-level policy


- Skill codes are quantized and interpretable
- Skill codes can be composed to get desired behavior
- ✓ Generalize to very long-range & unseen tasks
- ✓ Works very well in the low-data regime

Architecture

Interpretable Skill Codes

BabyAI

LORL

Learnt Skills

Figure 5: Word clouds on LOReL: We show the most correlated words for 4 different learnt skil todes on LOReL. We can see that the codes rep resent interpretable and distinguishable skills. For e.g., the code on the top left corresponds to clothe the drawer. (note that container is a synonym for

Results

Table 1: Initiation Results: We show our success rates (in %) compared to the original method and a flat non-hierarchical baseline on each thatest. LISA outperforms all other methods in the loss-data regime, and reaches similar performance as the number of demonstrations increase. See in retherd shown in bold.

Task	Num Demos	Original	Flat Baseline	LISA
BabyAl GoToSeq	1k	33.3 ± 1.3	49.3 ± 0.7	59.4 ± 0.9
BabyAl GoToSeq	10k	40.4 ± 1.2	62.1 ± 1.2	65.4 ± 1.6
BabyAI GoToSeq	100k	47.1 ± 1.1	74.1 ± 2.3	77.2 ± 1.7
BabyAI SynthSeq	1k	12.9 ± 1.2	42.3 ± 1.3	46.3 ± 1.2
BabyAI SynthSeq	10k:	32.6 ± 2.5	52.1 ± 0.5	53.3 ± 0.7
BabyAI SynthSeq	100k	40.4 ± 3.3	64.2 ± 1.3	61.2 ± 0.6
BabyAl BossLevel	1k	20.7 ± 4.6	44.5 ± 3.3	49.1 ± 2.4
BabyAI BossLevel	10k:	28.9 ± 1.3	60.1 ± 5.5	58 ± 4.1
BabyAI BossLevel	100k	45.3 ± 0.9	72.0 ± 4.2	69.8 ± 3.1
LOReL - States (fully obs.)	50k	6 ± 1.2	33.3 ± 5.6	66.7 ± 5.2
LOReL - Images (partial obs.)	50k	29.5 ± 0.07	15 ± 3.4	40 ± 2.0

Outperform non-hierarchical methods in low-data regime

Composition Tasks

Table 2: LISA Composition Results: We show our performance on the LOReL Sawyer environment compared to base

Method	Success Rate (in %
Flat	8.33
LOReL Planner	20.1
LISA (Ours)	22.5

Test on long composition instructions like "close the drawer, turn the faucet left and move black mug right"

Outperform prior methods by more than 2x