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—_ Introduction

® Emojis are an integral part of
communication

® Analyzing conversational data without
emojis leads to loss of information.

e Not a lot of research focused on
understanding the relationship of
emojis and text

e Further, analyzing downstream tasks
like sentiment analysis with emojis
could lead to a deeper understanding
of sentiments

Dataset

e Scraped data from emojipedia and
hotemoji to get emoji description,
images and metadata ~1700 emojis

o Modified the Twemoji dataset from
Cappallo et al. (2018) for our use case,
with the following statistics:

Approach
Our approach proposes a multimodal model that takes emoji description
and emoji image while predicting emojis.
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Emoji Embedder: Vision model and En?)age model that produce emoji
embeddings
Tweet Embedder: Finetuned sentence BERT model that encodes the
twitter texts (trained)
Prediction head: Returns the similarity score given a text embedding and
emoji embedding.

- Result: Zero-Shot Emoiji Prediction

e Our model outperforms our baseline on the Twemoji zero-shot
test set, with output restricted to emoji unseen in training only.

Model Top-1  |Top-5 Top-10  |Top-100
Our baseline 7.9 20.9 29.3 1
Sembert with dropout  |43.0 71.4 82.1 1
Ensemble with dropout |41.7 71.7 81.1 1
Our model underperforms our baseline for the scraped
zero-shot twitter dataset, with unrestricted output.

Model Top-1  |Top-5 Top-10 |Top-100
Our baseline 3.9 8.5 11.3 29.7
Sembert with dropout /0.0 0.1 0.1 33.6
Ensemble with dropout |0.0 0.2 0.03 23.2
EREC 0.0 8.4 9.1 28.5

- Result: General Emoji Prediction

o Our model significantly outperform baseline accuracies on the full test
set in terms of top-k accuracy.

Model Top-1 |Top-5 |Top-10 |Top-100
Dataset Sample  |# Emojis Cappallo et al. (2018)’s baseline |13.0 |30.0  |41.0  |84.0
Size Our baseline 1.3 4.0 6.0 21.7
Train Set 11.3M 1122 Sembert with dropout 26.5 |49.5 61.0 91.6
EREC 26.5 |45.0 57.4 90.8
Validation Set  |0.9M 1068
General Test Set |1M 1064 e Our model underperforms on a balanced test set. Possible reason is due
to (1) presence of zero-shot emoji in test set and (2) fewer training data
Zero-shot Test  |1.1M 99 due to zero-shot emoji exclusion.
Set Model Top-1 Top-5 |Top-10 |Top-100
e Created our own zero shot test set by Cappallo et al. (2018)’s baseline  |35.1 48.3 54.7 87.7
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Conclusion

Our model outperforms Cappallo et al. however, it did not do
as well in the case of a balanced dataset. Analyzing the
dataset, we see that emojis are used in two ways:

Express sentiment: | won the championship ‘%,

Words as emoji: Seals are like the dogs of the sea €@

e Our model performs well In sentiment emoji prediction,
but a baseline focused on word matching performs better
in word as emoji tasks

e By combining models that are good at sentiment
emoji-prediction and models that are good at word as
emoji prediction we obtain EREC (Emoji Recommender), a
model that gives practical yet versatile emoji prediction.

‘Stop the war in ukraine, we need peace! ### [, "

I came back home and we didn't have any food left
Maybe you can send me a picture of your dick? #4#
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Whales are such majestic creatures. ## [ %,
1 don't think he deserved to be treated like that
Christopher Mannings'
send nudes ### 5",
love the way you lie ##4#




