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Goal & Motivation | Resuts | Conclusions

e Use neural networks to conduct screenplay
generation with constraints on style

e Constraints gain insight into consistencies of
certain genres and directors - major sociological
implications for understanding what elements
constitute revered screenplays

Related Work
o PoetPG Model for generating Chinese poetry [1]
¢ Genre-based Movie Plot Generator [2]
o Script Generation using GPT-2 [3]

Dataset
l® Scrapea rrom the VISDB

o Scraper, Dataset Splitter, HTML Stripper

o 1200 screenplays(80% train, 10% eval, 10% test)
e Each screenplay ~30000 words split into
1024-word chunks

Models & Methods

o Input: genre and director

e Output: short (1024-token)
screenplay excerpts

e LSTM as baseline model

e Transformer based GPT2 &
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Fig. 2: Transformer
Architecture for GPT-2

Fig. 1: LSTM Cell

Perplexity across models for various epochs of training
Perplexity GPT2 Distil GPT2
3 epochs 5.87 5.81
5 epochs 5.69 5.31
10 epochs 5.86 5.04

BERTScores across models for various epochs of training

BERTScore Ryppr = 1 Pyerr - Rpert
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Calculation: =4 Poerr + Rpert
BERTScore GPT2 Distil GPT2
P 58.4 80.8
R 61.9 87.6
F1 60.0 84.0

Fig. 3: Training Loss over Steps for GPT-2 Model ~ Fig. 4: Training Loss over Steps for DistilGPT-2 Model
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Summary

o The purpose of this project was to see if a
model could learn genre- and director-specific
characteristics.

o Compared two models with the LSTM
baseline, and were able to see that the
DIstilGPT-2 model trained on 10 epochs
performed the best.

Applications

o Learning more about long-text generation

o Sociological implications of understanding
more about the variations of artistic styles of
screenplay

Limitations

o Our training dataset was not very long (only
included 1200 screenplays). The model is
pretrained on tasks that are not related to
movie-related tasks, which could make the
transfer learning less effective.

Future Improvements

o Train from scratch on specifically movie-script
datawithout using a pretrained model

o Experiment against other models such as
LeakGAN and VAE
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