

Emoji Prediction with Transformer Models

Wenna Qin, Jiacheng Ge

{wennaqin, kevinge1}@stanford.edu

Overview

- Motivation: Emojis play a crucial role in conveying emotions, making accurate emoji prediction a useful task to explore.
- Goals: Predict emojis for messages in supervised setting and generalize to new emojis in zeroshot setting.

Problem Setup

- Denote the set of emoji labels by $\mathcal E$ and the dataset by $\mathcal D=\{(t_n,e_n),\ n=1,\dots,N\}$ where $t_n=\{t_1,t_2,\dots,t_k\}$ represents a text sequence with k tokens and e_n refers to a single emoji in the label set $\mathcal E$. Given a tweet t, the task is to predict the $e\in\mathcal E$ that best associates with t.
- In the supervised setting, dataset \mathcal{D} can be randomly split into \mathcal{D}_{train} , \mathcal{D}_{dev} , \mathcal{D}_{test} .
- In the zero-shot setting, we ensure that the test label set is disjoint from the training label set, i.e. E_{train} ∩ E_{test} = Ø, so that the labels predicted at test time are unseen in training.

Data

- emoji-100k-49: 100,000 tweets with a single label from 49 emoji classes
- emoji-100k-20: select the 20 most used emojis in emoji-100k-49, 75,087 tweets remaining
- emoji-1m-49: 1,000,000 tweets with a single label from 49 emoji classes
- emoji-1m-20: select the 20 most used emojis in emoji-1m-49, 749,570 tweets remaining
- Split data 80% Train, 10% Validation, 10% Test

References

[1] Jason Wei et al., Finetuned language models are zero-shot learners. arXiv:2109.01652, 2021.

[2] https://www.kaggle.com/rexhaif/emojifydata-en

Methods

• (A) Supervised Setting: BERT/GPT2 + nn.Linear(hidden_size, num_labels)

. (B) Zero-shot Setting: instruction tuning (an example below)

(B) Instruction Tuning

Experiments

- Supervised setting
 - Use bert-base-cased and gpt_small as the base models for finetuning.
 - Stack a classification head on top and finetune all layers.
- Predict the label with the highest probability.
- Zero-shot setting
- Use gpt_small as the base model.

:party_popper: :clapping_hands:

:trophy:

- 。 Stack a language modelling head on top and instruction tune all layers.
- 。 Prediction
 - Given a prompt, generate the next token.
 - compute a score for each emoji label using chain rule. Denote a tweet as t and an emoji label $e = \{e_1, e_2, ..., e_n\}$. $s(e|t) = [p(e_1|t) p(e_2|e_1, t) ... p(e_n|e_1, ..., t)]^{1/n}$

Results

Supervised

Dataset	Model	ACC	ACC@3	F-1
emoji-100k-49	gpt2*	0.01	0.06	0.022
	bert	0.32	0.52	0.25
	gpt2	0.36	0.55	0.32
emoji-100k-20	gpt2*	0.07	0.12	0.01
	bert	0.42	0.67	0.37
	gpt2	0.43	0.67	0.41
emoji-1m-49	bert	0.45	0.63	0.42
emoji-1m-49	gpt2	0.47	0.64	0.45
emoji-1m-20	bert	0.55	0.76	0.53
	gpt2	0.55	0.75	0.55

* Unfintuned

Tweet	Predictions (↓probability)	True emoji
Lmao my brother is so dramatic.	⊙ 😉 😧	•
Done. Good luck everyone!		0
If I Ain't Got You.	22 💝 😩	•

· Zero-shot

- Using free text generation at inference time, model ignores the given options and generate labels seen during training.
- By forcing the model to predict an emoji label with the highest score, the accuracy barely improves (~6%), and it tends to predict a few particular emojis.

Conclusions

- Summary
 - Fine-tuned transformer models yield decent results on supervised emoji task.
 - A single task/dataset is not sufficient for instruction tuning to help a model learn and generalize.
 - Compared to the base LM for FLAN with 137B parameters, GPT2 might be too small for instruction tuning to help improve its performance on zero-shot downstream tasks.
- · Future work
 - Gather datasets for related tasks such as sentiment analysis to see if instruction tuning can be improved.
 - 。 Use tweets to generate images of emojis.