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Introduction

Related Work

Experiments

Large language models trained on massive text corpora have achieved state-of-the-art perfor-
mance on a variety of NLP tasks. However, this comes at the cost of exponentially increasing
their size. This raises several concerns, including their environmental impact, the engineering
challenge and cost of training them, and the impracticality of their deployment in edge devices
and other production environments. As seen in the table below, these massive language models
are only growing larger in size. In fact, in just four years, model sizes have increased by 3 orders
of magnitude.

Model Organization Date Size ( params)
ELMo A2 Feb2018 94,000,000
GPT OpenAl June 2018 110,000,000
BERT Google Oct2018 340,000,000
GPT-2 OpenAl Mar 2019 1,500,000,000
Megatron-LM NVIDIA Sep 2019 8,300,000,000
5 Google Oct 2019 11,000,000,000
GPT-3 OpenAl May 2020 175,000,000,000

Megatron-Turing NLG Microsoft, NVIDIA Oct 2021 530,000,000,000
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It is because of this that model compression for large language models has become a particularly
relevant field of study.

Contributions

We summarize our contributions as follows:

= implemented weight pruning for decoder-only GPT-style models, pretrained with causal
language modeling;

= implemented an architecture-agnostic implementation of Kronecker decomposition, with full
integration with Huggingface API;

= created a generalized training procedure for running all three methods

= achieved a perplexity measure comparable to GPT-2 Medium (355M) with only 41M
parameters (> 8x compression);

= derived theoretical intuition supporting the combination of the methods outlined.
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There currently exists a wide variety of compression methods, e.g. structured and unstructured
pruning [8], progressive low-rank decomposition [3], undivided attention [5], and weight quanti-
zation [7, 4]. As part of our project, we surveyed the current standing of these techniques:
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Figure 2. Model Quantization

T =2 Moe I H ‘
Figure 1. Model Distillation

Matrix decomposition has also been proposed as a technique for reducing attention computa-
tions. Compression techniques should aim to reduce model size while preserving accuracy.

Approach

We have identified 3 techniques which all, in their own way, decrease the number of model
parameters in a way, such that performance is not significantly impaired. We seek to combine
the improvements in a way that maximizes compression while maintaining good performance and
high-quality internal representations. We outline the 4 methods below.

Pruning once and for all

This technique ([8]) introduces sparsity in the weight matrices of the model, so that it running it
is less computationally expensive. It does so in 2 steps: (i) pruning weights (making them sparse)
and performing knowledge distillation (matching outputs of the smaller pruned model with the
outputs of the original); (i) fine-tuning while keeping pruned weights at O.

Kronecker Decomposition

Recall the definition of Kronecker product in eq. 1,
anB .-+ apnB
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where A € R™ ", B € RP*4, and A® B € R™P*". This technique ((6, 2]) computes and applies
the Kronecker product to all weight matrices of the model. The Kronecker product is calculated
for a weight matrix W by estimating the Kronecker factors A and B via the solution to the nearest
Kronecker problem (eq. 2), which can be solved via SVD.

Progressive Low Rank Decomposition

Recall the definition of Singular Value Decomposition for a weight matrix W € RC*S,

W=UsvT =Y oup]
i=1

This method ([3]) progressively applies a low rank estimation (W’ = WyW where Wy = U'v/Y and
Wi = VEIV'T) to the weight matrices of a transformer model, truncating smallest eigenvalues,
ahd iising kriowledge distilation to festore performanice lsses,

To facilitate combining the techniques above, we used the HuggingFace API to access and modify
models. We specifically used the distilGPT-2 model as a starter model for all of our experiments.
The distilGPT-2 model was pretrained on the WikiText-103 corpus, and has ~ 82M parameters.

Since, unlike other approaches, we start with an already compressed model, it cannot be expected
to match the compression ratio that studies show with full-scale models. This, however, improved
our training times and made training feasible on a single GPU with limited resources.

We evaluated our compression models (based on distilGPT-2) on the standard metric for
decoder-only models, perplexity:

PP(p) = 21
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Theoretical Analysis

Recall that the stable rank of a matrix A, ranks(A), is defined as the ratio in eq. 3, where the
numerator is the Frobenius norm of A, and the denominator is the spectral norm. Note further
that ranks(A) is at most the rank of A, and hence the stable rank is intuitively understood as a
continuous proxy to rank(A).
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Given that pruning directly decreases the Frobenius norm of the weights, we can infer that it
decreases the stable rank as well (the spectral norm, i.e. largest eigenvalue, should not be changing
under pruning, since knowledge distillation ensures that model outputs stay the same). Therefore,
under extreme compression cases, low-rank decomposition and pruning would start interfering
with one another, once the minimal rank is achieved.

In contrast with low-rank decomposition, Kronecker product is multiplicative with regards to the
rank, and hence rank remains constant after Kronecker decomposition. Therefore, Kronecker
should be able to fully integrate with both methods, and would aid computation in low-rank
decompostition, as we would be calclulating SVD on a much smaller matrix.

Lastly, examining recent results for generalization bounds [1], we see generalization error asymp-
totically bounded by the expression in eq. 4, which indicates that low-rank decomposition and
pruning, by explicitly decreasing the stable rank, would yield better generalization results.

Results and Analysis

While the full evaluation of all methods is scope of future work (due to time and resource con-
strains), we have demonstrated theoretical intuition for the success of the methods in combina-
tion, and the improved generalization capabilities of the compressed models.

We evaluated the pruning method on GPT-2 with a pruning factor of 0.5 (meaning that the
weights are 50% sparse) and achieved a perplexity of 43.69%, which is comparable to GPT-2
Medium, which has 335M parameters. In contrast, our pruned distilGPT-2 model has only 41M
non-zero parameters, therefore we have a compression > 8. This result is surprising, especially
provided a training time less than 24 hours on a single GPU, and shows that LLMs are vastly
overparametrized.

Looking more broadly, our theoretical analysis of pruning and low-rank estimators indicates that
these methods provide models with tighter bounds on generalization error, which indicates better
de facto generalization performance.




