

All for One or One for All: Ensemble of Diverse **Augmentation for Self-Attention**

Jasper McAvity jmcavity@stanford.edu

Tiffany Zhao tiffzhao@stanford.edu

Amir Zur amirzur@stanford.edu

Introduction

<u>Problem:</u> Accurate question and answering systems are crucial to Web search engines to

serve information needs

<u>Objective</u>: Produce a model which outperforms the baseline Bidirectional Attention Flow (BiDAF) on SQuAD 2.0 introduced in (Seo et al., 2018) [1]

Data & Approach

Data augmentation through backtranslation with Neural Machine Translation (NMT) models [2]

Finally pooling models together with:
• Ensembling techniques [5]

Example from dataset (context, question, answer):

Question: Why was Tesla returned to Gospic?
Context paragraph: On 24 March 1879, Tesla was returned to Gospic under police guard for not having a residence permit. On 17 April 1879, Milutin Tesla died at the age of 60 after contracting an unspecified illness (although some sources say that he died of a stroke). During that year, Tesla taught a large class of students in his old school, Higher Real Gymnasium, in Gospic.
Answer: not having a residence permit

QANet Architecture

- Results:

 Poorer overall performance
- than baseline model

 Able to learn quickly, but converges early

 Volatile loss during training

Self-Attention and R-NET

Results:

- improve upon the
- R-NFT didn't improve upon the baseline Self-attention improved upon
- the baseline

Results

Model	FI	EM	AvNA
BiDAF baseline	61.17	57.65	68.14
BiDAF self-attention	63.28	60.21	69.12
BiDAF char-embedding	65.11	61.86	71.38
BiDAF augmented	63.22	59.92	69.53
BiDAF ensemble	66.65	64.01	71.33

Data Augmentation

Ensemble Methods

- agmented language? del: CANet with 4 model encoders, and all convolutional neural layers, trained on all languages n**odel**: CANet with 3 of the 4 convolutional neural layers, and 4 model encoders, trained on a single language

Model	F1	EM	AvNA
Full augmented model	55.10	52.85	61.33
Enramble model	55.76	55.15	57.2

Conclusions