R-Net and Friends

Megan Worrel, Amrita Palaparthi, Ani Vegesana

Problem

Task: Question Answering (Reading Comprehension) is the task of automatically answering a question given a paragraph of

Importance: Question Answering is critical to determining how well models can understand and draw information from text

Contribution: R-net explores the effect of additional forms of attention on SQuAD performance; however, it does not combine these with meaningful additional input features. We explore the gains in performance on SQuAD 2.0 that can be achieved through the simultaneous use of R-net attention mechanisms and feature engineering as proposed by DrQA, coupled with hyperparameter tuning and ensembling techniques.

Background

Problem Setup and Notation: Given the i'th context paragraph c_i and question q_i , predict the start and end indices of the answer within the context if it exists. These indices are

Training Procedure: All models were trained for 30 epochs,

Evaluation: We use F1 score as the primary metric for

Baseline: We evaluate our results against a baseline Bidirectional Attention Flow (BiDAF) model using word embeddings, which achieves an F1 score of 60.65.

Experiments

Ensembling Results

RNN character embeddings: We switched the BiDAF CNN character embedding layer with a bidirectional LSTM. We saw no discernible increase in performance.

65.16 64.36

61.61*

62.32*

63.68

63.35* 65.02[†]

represented as the logits p_{start} and p_{end} .

using the AdaDelta optimizer with cross-entropy loss.

evaluation on the SQuAD 2.0 validation and test datasets.

Methods

Hyperparameter Tuning
Learning Rate Decay; We used a decay rate of 0.5 and
patience (number of evaluation steps of decreasing F1
before the change in I.R was applied) of 3.
Initial Learning Rate: We tested model performance
using an initial I.R of 1 (as used in BIDAP) and 0.5 (as used
in R-rett)
Hidden Layer Size: We experimented with hidden layer
stase of 100 (BIOAP) and 7 (R-rett).

Dropout: Using random search, we experimented with dropout values of 0.1, 0.37, and 0.52

- Additions to the baseline:
 1. Character-level embeddings
 2. Feature Engineering
 3. R-net gated and self attention
- Hyperparameter tuning
 Ensembling

DrQA Additional Input Features

- $f_{exact_match}(c_i) = \mathbb{I}(c_i \in q)$

 $a_{i,j} = \frac{\exp(\alpha(\mathbf{E}(c_i)) \cdot \alpha(\mathbf{E}(q_j)))}{\sum_{j'} \exp(\alpha(\mathbf{E}(c_i)) \cdot \alpha(\mathbf{E}(q_{j'})))} = \operatorname{softmax}_{:,j} \left[\alpha(\mathbf{E}(c)) \alpha(\mathbf{E}(q))^\top \right]$

for context embeddings $E(c_j)$, question embeddings $E(q_j)$, and a dense layer with ReLU nonlinearity α

Ensembling
Models: 9 models that achieved higher performance than the BiDAF baseline with character-level embeddings
Criteria: Maximum confidence score for predicted end index p_{rest}

RNet Gated and Self Attention

* attention layers are in series

Tattention layers are in parallel

"Mutually Recursive" RNet implementation
All other experiments utilize "Non-Recursive" implem

"Mutually Recursive"
• First we implemented RNet gated and self attention as described in the

RNet Results

BIDAF

RNet Gated RNet Self Attention Attention

RNet paper

RNN output and context-question context-question were computed through mutual recursion, requiring inefficient manual looping in our implementation

"Non-Recursive

· For more efficient training, we switched to a non-recursive

- Attention computation occurs as an input to the LSTM
 This eliminates the need for expensive manual iteration, leveraging much faster matrix computation and gpu processing

Conclusions

- Implementing R-Net attention mechanisms in conjunction with DrQA's additional input features results in a substantial increase in performance over our baseline model on Question
- Answering for SQuAD 2.0 Each of the **four main components** of our approach - DrQA additional input features, R-Net attention mechanisms. hyperparameter tuning, and ensembling **built upon one another** to provide an incremental increase in F1 score
- Ensembling the variety of models we trained based on confidence score enabled our approach to perform well on a wide range of inputs, further augmenting performance

Department of Computer Science, Stanford University Research Mentor: Allan Zhou

Analysis

Summary of Highest-Performing Improvements:

Incremental Improvement	Maximum F1 Score
Baseline	60.65
Feature Engineering	65.16
R-Net Attention (untuned)	65.02
Hyperparameter Tuning	65.39
Ensembling	68.32

- Exact match and Aute each monologous possess of a score, our combining them did not result in significant improvement. This aligns with DrQA's finding that these two features play complementary roles

 BIDAF's attention mechanism performed more effectively than R-net gated attention alone, as they play a similar role, but BIDAF uses multiplicative rather than additive attention

Out-of-vocabulary Words

Question: Who designed the garden for the University Library?
Context. Another important library - the University Library founded in
1816, is home to over two million items. The building was designed
by architects March 8 Budznásis and Dispinel 8 Budzowski and opened
on 15 December 1999. It is surrounded by green. The University
Library garden designed by Igene Bagierska, was opened on 12 June
2002. It is one of the largest and most beautiful roof gardens in
Europe with an area of more than 10,000 m/2 (10,253,01 sq ft), and
plants covering 5,11 m/2 (55,01.4.35 sq ft). As the university garden it
is open to the public every day.
Answer: Irena Bajerska
Prediction (besseline): Marek Budzyński and Zbigniew Badowski
Prediction (char embeddings): Irena Bajerska

Anaphora

• Question: What is the term for a task that generally lends itself to

Question: What is the term for a task that generally lends itself to being solved by a computer?

Context: Computational complexity theory is a branch of the theory of computation in theoretical computer science that focuses on classifying computational groblems according to their inherent difficulty, and relating those classes to each other. A computational problem is understood to be a task that is in principle amenable to being solved by a computational problem is understood to be a task that is in principle amenable to being solved by a computed which is equivalent to stating that the problem may be solved by mechanical application of mathematical steps, such as an algorithm.

Answer computational problems

Prediction (BiDAF): N/A
Prediction (RNet self-attention): computational problem

References

[1] Jason Wetson,] Antoine Bordes, Danqi Chen, Adam Fisch. Reading wikipedia to answer open-domain questions. In Association for Computational Linguistics (ACL), 2017

[2] Microsoft Research Asia Natural Language Computing Group. R-net: Machine reading comprehension with self-matching networks. In Association for Computational Linguistics (ACL), 2017. 5