

Pre-training and Data Augmentation for Dialogue State Tracking

Paridhi Maheshwari, Sharmila Reddy Nangi {paridhi, srnangi}@stanford.edu

Introduction

- · Dialogue State Tracking (DST) is an important step in task-oriented dialogue systems.
- · Slot filling based on the current user utterance and dialogue history.
- you with today?

 User I also need a taxi to get me to the restaurant on time.

 State: restaurant-food-chinese; restaurant-name-charile chan restaurant-book day-monday; restaurant-book time=12:15

 taxi-destination-charile chan; taxi-arriveby=12:15 We explore pre-training strategies and data augmentation methods to better leverage the power of large-scale, pretrained language models (like BERT and T5) for DST.
- Multi-Domain Wizard-of-Oz (MultiWoZ) Dataset [1]
- Multi-turn dialog utterances with labeled slot-value pairs.
- Evaluation: Joint Goal Accuracy, Slot F1, Slot Accuracy.

Data Augmentation for Dialogue Understanding

- LMs perform better when provided with huge amounts of training data [3].
- Why Data Augmentation?
 - Additional training data without any human annotation effort.
 - Provides diversity for better generalizability of NLP models.
 - Noisy annotations in MutiWoZ dataset (multiple versions).
- Rule-Based Augmentations: Entity Replacement, Crop and Rotate using dependency parse trees, Sequential augmentation to increase complexity.

Deep Learning Techniques:

Paraphrasing using Pegasus, Reverse translation with English-Spanish NMT.

- Data augmentation significantly improves performance on DST.
- High levels of augmentation can at times hurt the performance too

Original Utterance Entity Replacement Paraphrase Translate Sequential

CropRotate € 51.2

Can you find an Indian restaurant for me that is also in the town centre? Can you find an Mexican restaurant for me that is also in the town east? I want to go to an Indian restaurant in the centre of the town. I am looking for an Indian restaurant that is also in the city center? Can you find an Indian restaurant for me that is also in the town centre? I want to make a reservation for two people.

find an Indian restaurant that is in the town

an Indian restaurant for me that is also in the town centre find you

Multi-phase Adaptive Pre-training

Sys: Hi, what can I do for you?

User: Please find me a Chinese

restaurant.

State: restaurant-food-chinese

Charlie Chan fits your criterion, can I book it for you?
Yes, I need a table on Monday at 12:15.
: restaurant-food-chinese; restaurant-name-charlie chan restaurant-book day-monday; restaurant-book time-12:15

Sys: Booking is successful. Is there anything else I can assist you with today?

- Significant domain mismatch between large-scale text corpus (for language modelling) and dialogue datasets.
 - Domain adaptive pre-training on open-domain dialogue:
 - Task adaptive pre-training on target dataset.
- · Span-level objectives to reason across multiple turns and selection where entities are contiguous sequences of wor

es	·.	DAPT	31.9	100.0	
	oan-	TAPT	22.7	73.8	
rd:	S.		Google Books	DAPT	TAPT
	M	.1			
	JGA		S F1	SA	
53.5			75.8	92.2	
	54.6		76.3	92.3	
	54.9		75.9	92.2	

Model	Objective	Pre-training	MultiWOZ 2.0			MultiWOZ 2.1		
1120461	o o jeeu re	TTO TIME	JGA	S F1	SA	JGA	S F1	SA
	Base		51.2	75.2	92.6	53.5	75.8	92.2
BERT	Span Prediction	+ DAPT	52.1	75.1	92.6	54.6	76.3	92.3
DEKI		+ TAPT	50.7	75.2	92.5	54.9	75.9	92.2
		+ DAPT + TAPT	51.7	75.1	92.6	53.6	75.9	92.2
		Base	50.2	89.6	96.5	50.3	90.2	96.3
T5	Span Corruption	+ DAPT	50.2	89.4	96.4	50.8	90.2	96.5
13		+ TAPT	51.6	89.9	96.6	51.3	90.4	96.7
		+ DAPT + TAPT	51.5	89.6	96.5	50.2	90.2	96.4

Domain Analysis

- Combining best pre-training method and data augmentation techniques.
- Consistent gains in goal accuracy across all domains in MutiWoZ.

Conclusion & Future Work

- Incorporating language structure of dialogues through span-level pre-training and additional domain data through augmentation methods is helpful for DST.
- Potential future direction would be to study the impact of these techniques on end-toend dialogue systems including generation.

References

[1] Budzianowski et al., Multiwoz-a large-scale multi-domain wizard-of-oz (a) Dudziałowskie za iz, Moltuwoża la ige szakie infortoriania i wandorod dataset for task-oriented dialogue modelling, EMNLP 2018 [2] Gururangan et al., Don't stop pretraining: Adapt language models to domains and tasks, ACL 2020

[3] Feng et al., A Survey of Data Augmentation Approaches for NLP, ACL 2021