Squadobots and Decepticonvs

( Problem and Background )

+ We consider the problem of Question Answering (QA) on the Stanford Question Answering Dataset
(SQUAD) 2.0.

* The objective is to design a system that answers a question using the provided context information.

« Formally, given a question of N words, [, ..., gy], and a context paragraph of M words,
[¢}, -, ¢y, the QA system should return a span of context words [cgtart, - -
or an empty span if unanswerable.

* The QA problem is relevant to many modern day technologies ranging from digital assistants like Siri
and Alexa to the handling of Google search queries.

« This problem involves addressing many open challenges in Natural Language Processing (NLP) such

Kas text comprehension, sequence modeling, and information retrieval. J

-, Cendl as the answer

(" Methods )

+ We trained a deep neural network that is adapted from the provided BiDAF model implementation.
* We preserved the BiDAF model structure but investigated the impact of various design choices on
F1/EM performance metrics including:
* introducing character embeddings,
> replacing LSTM layers with Transformer blocks for improved global context modeling,
* introducing convolution layers for improved local context modeling, and
* model pretraining.
* Pretraining was performed using the SQUAD 2.0 dataset.
* We corrupted the context with random word and character vectors and train the model to
reproduce the true context.
» We used an adaptive softmax layer to output the context without the corruption.
* Remarks:
» Introducing character embeddings produces the largest performance improvement.
> Transformers perform similarly to LSTMs for the hidden sizes permitted by our hardware memory
constraints.
> Convolution layers after the Attention Flow Layer provide small performance improvements.
*» Convolution layers before the Attention Flow Layer appear to smear per-word information,
hurting performance.
k > Pretraining also yields a minor performance improvement.

o Best Model

« Our best performing model (Fig. 1) uses word and character embeddings and a convolution layer
between the Attention Flow and Modeling Layers.

« We found using Transformers for the Contextual Embed and Modeling Layers performed similarly.

« This model was pretrained for 12 epochs with the corrupted input and fine-tuned on the QA task for
18 epochs.

« Training was performed with a batch size of 64. We use Adadelta as the optimizer with a fixed

uearning rate of 0.5. Training took approximately 3 hours on an Nvidia GeForce RTX 2080 Ti.
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( Experiments

« Performance on the dev set increased quickly for the first 10 epochs and slowed afterward.

* The plot shows that the pretrained model had slightly faster task-specific learning but similar overall
time. The dotted line starts at the number of iterations of pretraining to demonstrate the total time.

* The lines on the left edge show the maximum achieved score for each model. As the model
improved, the incremental changes got smaller.
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Analysis
* Character Embedding
* Question: What is a ligand on the cell surface that is upregulated after helper T cell activation?
» Context: “...helper T cell activation causes an upregulation of molecules expressed on the T cell's
surface, such as CD40 ligand...”
* Prediction: CD40 ligand
» Character-level representation was required to figure out CD40, since it is a rare word.
* Understanding vs. Word Finding
* Question: What King and former Huguenot looked out for the welfare of the group?
> Context: “...Henry IV, a Huguenot before converting to Catholicism, who had protected
Protestants through the Edict of Nantes.”
> Prediction: Henry IV
» The model understood similarities between “looked out for the welfare” and “protected.”
» It figured out that Henry IV was a King based on other context, despite never using the word King.
« Trouble with Modifiers such as Ownership
* Question: What sort of motion did Newcomen's steam engine continuously produce?
* Context: “... James Watt patented a steam engine that produced continuous rotary motion. ...”
» Prediction: rotary motion 3¢
» It understood that “rotary motion” is linked to “steam engine” but incorrectly credited Newcomen.
* In another example where the question asked about Watt, the model gave the correct answer.
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Fig. 1: Model architecture for the best performing model. This model
takes both word and character embeddings as inputs and
introduces a convolution layer following the Attention Flow Layer.
This model was pretrained to reconstruct corrupted context data
from SQUAD 2.0.

( Conclusions b

* Subword modeling is crucial for questions pertaining to specialized terminology, numerical entities,
or obscure words.

« Transformers seem to require significantly more parameters than LSTMs to see performance benefits.

« Convolution layers before the Attention Flow Layer appear to smear information where per-word
information seems important.

* After ion Flow, help local context for answers.

* Pretraining yielded a minor performance improvement, but would likely be more useful with a larger

\_ unlabeled data set.
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