

Does Data Augmentation Matter More Than Architecture Design for Small Datasets?

Max Sobol Mark | maxsobolmark@stanford.edu Computer Science Department, Stanford University

Motivation

Transformer-XL is a method that combines the best of Attention-based methods and RNNs like LSTMs. It is able to model very long-distance relationships between tokens in the input text efficiently.

Reproducibility concerns: Without mentioning it in their paper, they use data-augmentation techniques that are essential to getting good performance in the small data regime. People who tried reimplementing their approach created a bounty for whoever was able to match LSTM performance with Transformer-XL.

Objective: Answer the question: Are data-augmentation techniques more influential than model architecture for small datasets?

Problem Setting - SQuAD

Example from the dataset:

Question: Why was Tesla returned to Gospic?

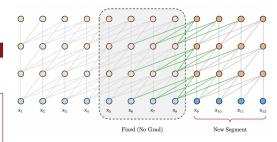
Context paragraph: On 24 March 1879, Tesla was returned to Gospic under police guard for not having a residence permit. On 17 April 1879, Milutin Tesla died at the age of 60 after contracting an unspecified illness (although some sources say that he died of a stroke). During that year, Tesla taught a large class of students in his old school, Higher Real Gymnasium, in Gospic.

Answer: not having a residence permit

- *130k training samples
- #6k dev samples
- *6k test samples

Methods - Transformer-XL architecture

- In the vanilla Transformer architecture, the selfattention mechanism can only pay attention to the current context of tokens.
- The Transformer-XL has a segment-level recurrence with state reuse. This allows it to look arbitrarily back in the input text.
- To differentiate between tokens of the current segment and the previous segment, they use Relative Positional Encodings. It adds a learnable vector that encodes the position of tokens.
- Our model outputs the start and end indices of the predicted answer



Dropout techniques

- 1. Discrete Embedding Dropout
- Drops entire word embeddings with some probability.

 2. Standard dropout for input embeddings
- Standard dropout for input embeddings
 Drops out elements of the embeddings randomly.

They act as Data-Augmentation techniques, similar to adding noise to images.

They improve generalization, but require more time to train.

Results

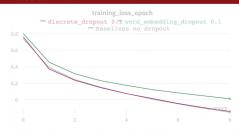


Figure 1: Training loss curves for Transformer-XL models.
Grey is the baseline model without dropout. Green is the word embedding dropout model. Pink is the discrete embedding dropout variation.

- Transformer-XL No Dropout: F1: 12.80, EM: 10.87
- Transformer-XL Discrete Dropout 0.1: F1: 03.37, EM: 01.23
- Transformer-XL Standard Embedding Dropout 0.1: F1: 06.78, EM: 04.54
- BiDAF Discrete Dropout 0.1: F1: 60.4, EM: 57.22
- Baseline (BiDAF No Dropout): F1: 58, EM: 55

Discussion

- Transformer-XL models were not trained for enough time to reach convergence, and they take much longer to train than LSTM-based models. This is why we are seeing such poor results.
- Using discrete dropout does improve the performance of our LSTM-based model

Next steps

 The immediate next step is to train our Transformer-XL models for longer to reach convergence and do fair comparisons with the LSTM baseline.