FAME-BERT: Stable Meta-learning for Robust Question-Answering

Bharat Khandelwal, Shubham Anand Jain CS224N Winter 2022

Problem Statement

We work on building a Robust Question Answering system that can generalise to out-of-domain datasets with a small number of examples.

Input: Paragraph, Question about the paragraph Output: Span of text from the paragraph

Question: Why was Tesla returned to Gospic? Context paragraph: On 24 March 1879, Tesla was returned to Gospic under police guard for not having a residence permit. On 17 April 1879, Milutin Tesla died at the age of 60 after contracting an unspecified illness (although some sources say he died of а stroke). Answer: not having a residence permit

Fig 1. Example Prompt

We have 3 in-domain datasets and 3 out-of-domain datasets, where the OOD datasets are used for evaluation.

Dataset	Question Source	Passage Source	Train	dev	Test
	in-domain	datasets			
SQuAD [5]	Crowdsourced	Wikipedia	50000	10,507	-
NewsQA [7]	Crowdsourced	News articles	50000	4.212	
Natural Questions [6]	Search logs	Wikipedia	50000	12,836	-
	oo-domain	datasets			
DuoRC [9]	Crowdsourced	Movie reviews	127	126	1248
RACE [10]	Teachers	Examinations	127	128	419
RelationExtraction [11]	Synthetic	Wikipedia	127	128	2693

Fig 2. Dataset details

Method

We use Model Agnostic Meta Learning (MAML) [1], which is an algorithm that trains a model to "learn how to learn

We learn an effective representation of parameters θ that performs well on new tasks given few-shot training.

Fig 3. Illustration of Meta-learning

We experiment with various methods to make meta-learning more stable, which leads to the name FAME-(Finetune-Augment-Metalearn-Ensemble DistilBERT).

Our Training pipeline consists of three parts:

- nitial training: Training on in-domain datasets, done using a pre-trained BERT, Metalearning, or retraining of another model ing: Training on the OOD train
- datasets, possibly augmented, tuning LR Ensembling: Taking multiple seeds and
- combining the predictions using voting

Training Pipeline

Experiments

We evaluate our models based on their EM and F1 scores, which are defined as follows:

- EM Score is a binary measure of whether the answer is correct -> intuition: Is this exactly the actual answer?
- F1 Score is defined as 2 x precision x recall / (precision + recall) -> intuition: How close is the actual answer?

We demonstrate our methods on 4 candidate baseline models, with descriptions as follows:

Model Name	Model Description	Train epochs	Train time (hours)
\mathcal{M}_1	DistilBERT baseline, no finetuning	3	4
\mathcal{M}_2	DistilBERT baseline	10	13
\mathcal{M}_3	First-order MAML	10	17
\mathcal{M}_4	Second-order MAML on M_2	1	5

Fig 5. Model Descriptions

We notice that different datasets require different learning rates due to diverse underlying data characteristics, as demonstrated in Figure [6].

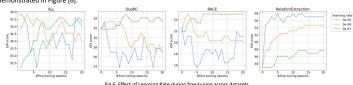
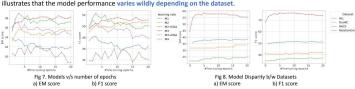


Fig 6. Effect of Learning Rate during fine-tuning across datasets

Choosing the best learning rates for the models, we note that the models compare as given in Figure [7]. Figure [8] illustrates that the model performance varies wildly depending on the dataset.



- Results & Analysis -

Based on our preliminary experiments, we had the following findings & followed up on them:

- We noted that our fine-tuning results were unstable, and therefore we tuned learning rates separately for each dataset, which helped increase stability significantly, as observed in Figures [6a, 6b]
- We noted significant variance in predictions across multiple seeds for the same model (Figure [9]), so we ensembled across seeds. This was observed to boost F1 scores, as seen in Figure [10]
- We performed data augmentation [3] to alleviate the lack of training data on out of domain sets; the advantage can be seen in Figures [7a, 7b]
- After looking at initial instability of meta learned models, we proposed M4, where we used 2nd order MAML on top of a good pre-trained model based on ideas from the paper "How to train your MAML" [2]

[5]	88.2			
[4, 1]	7.1 3.9	Model	FI	EM
[3, 1, 1] [2, 2, 1]	0.3 0.5	Average of 5 Seeds Ensemble (Majority Vote)	51.11 ± 0.24 52.073	38.74 ± 0.29 38.743

On the dev and validation sets, our final results are as follows:

Model Name	EDA	Dev F1	Dev EM	Test F1	Test EM
\mathcal{M}_1	No	46.512	31.675	59.187*	40.28*
M_2	No	51.995	37.173	2	
M_2	Yes	53.020	39.791	59.679	42.156
M_3	No	52.128	39.529	59.347	42.431
M_3	Yes	51.276	37.958	-	-
M_4	No	46.736	33.770	-	200
Ensemble(M_2, M_3)	Yes	53.065	40.314	60.042	42.959
Leaderboard rank		6	1	11	5

Fig 11. Final dev & test set results

Future Work

Due to high training costs, we were unable to find good hyperparameters for EDA and SO-MAML on training. We also expect that the following methods will help performance:

- Using OOD train data in the training step
- Incorporating importance sampling, even in just finetuning

References

- "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks", Chelsea Finn, Pieter Abbeel, and Sergey, Lewine "Hovo to train your MAML", Antreas Antoniou, Harrison Edwards and Amos Storkey "EDA: Easy data augmentation techniques for boosting performance on text classification tasks", Jason Wei and Kai Zou