Summarize without Direct Supervision: Extractive Summarization of Medical Notes using Weakly Supervised Learning

Hsu-Hang (Eric) Yeh, MD¹;
¹Department of Biomedical Data Science, Stanford University, Palo Alto, CA

Problem

- Medical professionals need to read and process huge amounts of medical notes every day. Automatic summarization of notes that condense multiple documents into a single succinct summary brings
- summarization, but requires human annotated data, which is rare in

Backgrounds

- · Weakly supervised learning can be used to solve the data scarcity
- In a recent study[1], McInerney et al. trained the model on a separate task of predicting future diagnosis and used the intermediate results to score the importance of sentences.

 However, the summary is query-specific. Different queries produce
- different summaries.

- · We devised a different heuristic: predicting near future procedures, to
- make the model learn to score the **general** importance of sentence. The idea is: if the model relies on some sentences to infer the near future procedure, the sentence might contain important information
- for summary. Objective of training: $\{(\theta) = -\sum y_j \log(g(S \mid j, \mid D \mid))\}$, where y_i is the near future label of the j-th note, $S_i = \{s_{11}, s_{2j}, ..., s_{nj}\}$ is the set of sentences in j-th note, and $D_i = \{d_1\}_i = 2j_i, ..., d_{nj}\}$ is the set of diagnoses of j-th note, $g(S_i)$. Di is the function that estimates the probability p_i of near future procedure of the j-th note
- From the intermediate calculation of g, we can derive another scoring function f such that the importance score of $s_{i,i}$ is $f_{D_i}(s_{i,j})$
- Let $A = \bigcup_{j} S_{j}$ be the set of all sentences of a given patient. The ultimate goal is to find subset A' such that

$$\left\{s_{i,j}; s_{i,j} \in A'\right\} = \operatorname{argmax}_{A' \in A, \left|A'\right| = \frac{|A|}{10}} f_{D_j}(s_{i,j})$$

- -1000 ophthalmology patients were randomly extracted from Stanford Research Repository (STARR) database.

 -Their de-identifi ed IDs were randomly split into training, validation,
- and test sets of size 950, 50, 50 patients, respectively
- This amounts to 13974, 974, 724 notes in each group,
- respectively. Notes were cleaned and segmented The diagnoses for each visit were also extracted.

Experiments

Baselines

- Random selection of 10 percents of sentences
 K-means on ClinicalBert[2] sentence embeddings and choose the sentence closest to the center
- Term frequency-inverse document frequency (tf-idf) embedding of a entence. Tf-idf is a score for each term that represents its importance The sum of tf-idf score in a sentence is used as sentence scores
- Cosine similarity between ClinicalBert diagnoses embeddings and each sentence embedding as sentence scores

- · Inputs: Bert embedding of sentences of a note and diagnoses on the same date, Outputs: procedure logit and attention weights to all sentences
- - -ClinicalBERT-Naïve: diagnosis ClinicalBert embeddings are averaged and prediction layer is a single-layer neural net
 - ClinicalBERT-PL: prediction layer has two layers, residual connection, and layer norm on nputs -ClinicalBERT-DL: in addition to PL, diagnosis layer is a two-layer neural net
 - OphBERT-PL: change ClinicalBert to OphBert [Tao, 2022, work in progress] that is trained on opthalmology notes
- In (A) the attention weights of D with respect to all sentence embeddings are used as sentence scores for summary.
- (B) bi-direction attention
- Transformer-PL: concatente all sentences and diagnoses in single sequence and introduce [SNT] and [DIA] token, whose last his are used for prediction.
- . In (B) the attention weights of [SNT] and [DIA] with respect to all sentence

Results

- · 3 different evaluation; (1) procedure prediction, (2) pure-related summary (only sentences related to procedure is selected). and (3) general summary (our primary goal) — (1)(2) are only for analysis purpose and (3) is of primary interest
- Both ClinicalBERT-PL and ClinicalBERT-DL outperformed the tf-idf baseline. ClinicalBERT-DL also had highest ROUGE-1, ROUGE-2, and ROUGE-L F1 scores.
- · Despite having no outstanding performance on the proxy task, the model did learn better to select important sentences

	Procedure		Summary - Procedure		Summary - General				
	FI	AUROC	FI	AUROC	FI	AUROC	Rouge-1 F1	Rouge-2 F1	Rouge-L F1
Baseline									
Random	-	-	-	-	0.094	-	0.241	0.111	0.167
K-means	-	-	-	-	0.105	-	0.391	0.238	0.281
Tf-idf	-	-	-	-	0.235	0.567	0.398	0.293	0.334
Cos-similarity	-	-	-	-	0.153	0.508	0.312	0.224	0.263
Models									
ClinicalBERT-Naïve	0.491	0.719	0.198	0.632	0.216	0.596	0.366	0.236	0.278
ClinicalBERT-PL	0.474	0.776	0.198	0.764	0.294	0.690	0.431	0.326	0.362
ClinicalBERT-DL	0.487	0.737	0.147	0.676	0.353	0.708	0.494	0.414	0.451
OphBERT-PL	0.515	0.787	0.143	0.688	0.200	0.702	0.356	0.214	0.262
Transformer-PL	0.319	0.556	0.121	0.590	0.118	0.490	0.337	0.203	0.243

Analysis

- . The models have tendency to select
- sentences from shorter notes.
 This phenomenon can be explained by our use of softmax scores because a sentence in a shorter note (i.e. less sentences) was more likely to receive a high softmax score.
- · Domain-specific BERT model did not seem to improve the performance.

 - The OphBERT model reportedly did not
- perform better than ClinicalBert on text classification task [Tao, 2022, work in progress]
- Can be due to the small size of ophthalmoogy notes corpus.

Conclusions and Discussion

- Weakly supervised learning strategy that uses near future procedures as proxy labels can help the model learn the importance of sentences in medical notes.
- · This could bring inspirations on how to approach this task with other heuristics. We plan to add more heuristic that help the model learn more precise scoring functions

References

- mily Alsentzer, John Murphy, William Boag, Wei-Hung Weng, Di Jindi, Tristar aumann, and Matthew McDermott. Publicly available clinical BERT embeddir