Abstract

Problem

Reverse Dictionary

Ethan Cheng, H. Billur Engin, Noah Kuo

CS224N Custom Project, Computer Science, Stanford University

Methods

Experiments

Stanford
Computer Science

Analysis

In this project, we produce a
reverse dictionary, which allows
one to find a word that they
can't remember by describing
its meaning. A reverse
dictionary takes in a word
definition as an input query and
returns the top-k candidate
words that are most likely to
match this definition. The input
can be similar to a dictionary
definition, or even a colloquial
description of the desired word.
For example, the input “a small
vessel propelled on water”
should yield an output of
“boat”.

We compare multiple possible
approaches to find the best way
to implement a reverse
dictionary, both in terms of
accuracy and in terms of
computational workload and
speed. We find that an
encoder-decoder model using a
BERT encoder with either linear
decoder layers or an LSTM
decoder yield the best results,
but similar accuracy can be
obtained even with lightweight
BERT models.

Stanford

University

A common phenomenon is the tip-of-the-tongue
problem, where you can't quite remember a
specific word or phrase you are thinking of. We
propose a "reverse dictionary" as a solution to
this problem, which takes a word description or
definition as an input query and returns a list of
the top candidate words.

Sample Sample Output
Input

Small
amount

smidgen, scrap, speck, little, bit

Winter sport skiing, snowboarding, sledding, ice
skating, curling

Some use cases for a reverse dictionary:

* Recalling a word on the tip of your tongue

* Finding synonyms for a word

* Learning new words for non-native speakers

Background

The research space for reverse dictionaries is
relatively sparse. There are very few papers that
utilize recent state-of-the-art methods like BERT or
neural networks[1]. Reverse dictionary
implementations online simply compare word
counts in inputs to known word definitions. As a
result, there is still lots of research that can be
done to improve the performance of reverse
dictionaries.

Dataset

For our dataset, we use word-definition pairs from
WordNET and the Online Plain Text English
Dictionary, combining for approximately

300 thousand pairs. We construct an 80/20
training/validation split.

We use pre-trained GloVe embeddings[2] for our
model. The pre-trained set contains 100-
dimensional embeddings for 400 thousand words

We tokenize all input queries, then pad and
truncate to the same length. Tokens are passed
into a BERT layer to generate the query encoding.

We test two different model variants. First, we use
a decoder stack composed of fully connected
linear layers, ReLU, BatchNorm, and DropOut
layers to train for 20 epochs. The final output is a
100-dimensional predicted word embedding.

Output: 100

Fully Connected (512 x 100)

ReLU

Hidden State: 512
Fully Connected (2048 x 512) |

ReLU
Hidden State: 2048

Fully Connected (25,600 x 2048) |
Hidden State: 25,600

ReLU

Hidden State: (200, 128)
Fully Connected (256 x 128)

ReLU

Hidden State: (200, 256)
Fully Connected (768 x 256)

Hidden State: (200, 768)
BERT

Input: 200

Our second model variant is composed of a four-
layer long short-term memory (LSTM) RNN with
dropoutin all layers besides the final layer. The
input and output for this model is the same as
those described above.

! S ST = vy By v BN g B
1, ST BT T I T T)

L sear

@

After training both our model variants, we see
that the linear decoder and LSTM decoder both
reach similar accuracy levels on the validation
set. However, LSTM reaches significantly higher
accuracy on the training set.

Training Accuracy

Validation Accuracy

- I

However, the LSTM needed 100 epochs to reach
the same validation accuracy as the linear
decoder which only needed 20. This also resulted
in significantly higher training time for the LSTM
decoder.

We also trained our model with DistilBERT instead
of BERT large for our encoder layer.

Validation Accuracy

We find distribution of loss among samples is
similar, but the LSTM model is more robust with
fewer outliers.

Train Validation

Tinear

LSTM

We also find that the top-1 and top-10 accuracy
scores increase by nearly 1.5x if evaluated on just
the 2000 most frequent words.

Conclusion

We find that our approach can accurately extract
semantic meaning from a description of a word
and provide a good prediction of target words.
Overall, we believe the LSTM decoder has more
robust behavior even if it is slower to train.

Although our model finds the top-k words out of a
vocabulary of 400,000, a typical English speaker's
vocabulary is much more limited (order of a few
thousand per day). Our reverse dictionary could
be even more accurate and useful if we removed
rare and unused words.

Key References

