Labeling Chest X-ray Reports with Markers of Longitudinal Change

Problem

Background: Chest X-rays (CXR) are the most common imaging examination and critical to
diagnosing and managing many medical conditions. Recently, the use of NLP to extract
labels from radiology text reports has enabled the large-scale training of deep learning
models for clinical applications focusing on a single point in time.

Problem: Many clinical tasks require comparing multiple points in time to understand
disease progression - thus extracting labels relating to longitudinal change from radiology
text reports would enable the training of Al systems that facilitate tedious comparisons
performed by radiologists.

Existing Approach: Little has been done towards characterizing change in imaging datasets.

e Public datasets such as MIMIC-CXR and CheXpert, labeled using NLP, do not contain
longitudinal change labels.

o The only existing work that focuses on longitudinal change in CXRs uses a rigid text
matching approach to match frequent sentences pertaining to disease progression.

Task Proposal

Task Definition: We formulate the report |Disesse Progression| Disease stabiity | _uncertain |
labeling task as a multi-class ification | e aL! 1]
problem where the classes are disease Table 1: Class distribution of evaluation set
progression, disease stability, and uncertain
(no indication).

Datasets: We use 227,827 free text
radiology reports from MIMIC-CXR. We 2 e
randomly selected 1000 reports for manual i
annotation. Each report was annotated by gy Repors: H — e
two human readers, with conflicts il

determined by committee consensus. [—

Figure 1: Data processing flow

Proposal: The core idea behind our approach is to utilize both strong and weak
supervision in order to maximize the performance and label efficiency of our
approach. Our supervision strategies are below, and we explore different ways to
combine them in our experiments.

- BERT-phm: Training BERT on a rule-based labeler on all train reports

- BERT-man: Training BERT on a small set of manual annotations

- Distillation: Training BERT on the output of a BERT model on all train reports
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Figure 2: Model training pipeline.
Strong and weak labels can be
iteratively distilled to maximize
Iabel efficiency.
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Rule-based baselines:
1. Frequent Sentence Matching (SM) - matched 10% of dataset as progression or stability
2. Frequent Phrase Matching (PHM) - matched 57% of dataset as progression or stability
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Experiment 1 - Supervision Strategies

Approach: We train models using various combinations of strong labels (manual
annotations) and weak labels produced from the rule-based phrase matching baseline.
Results:

Supervision Method

Figure 3: Effect of supervision strategy. All BERT models were fine-tuned from a
standard pretrained BERT. Error bars indicate 95% confidence interval calculated using
1000 nonparametric bootstraps.
Analysi
o We find that the only existing approach SM produces near-random results on our
dataset. Our proposed baseline PHM performs significantly better.
BERT-phm produces a sizeable yet not statistically significant improvement over PHM.
We h hesize this is due to i I; rather than simply
due to training a model and explore this further in Experiment 2.
BERT-man significantly outperforms BERT-phm. Attempts to utilize the PHM weak
labels do not produce performance increases over BERT-man with the slight exception
of BERT-man-phm-man. We explore further strategies for incorporating weak labels in
Experiment 3.

Experiment 2 - BioMedical Language Representations

Approach: We investigate the effect of pretraining data on model performance.
Results:

Pretraining method | AUROC
General pretraining
Random initialization ~ [0.697
BERT 0.826
Biomedical pretraining
BioBERT 0.831
ClinicalBioBERT 0814
BlueBERT 0.807

Table 2: Effect of pretraining strategy. All BERT models were trained using the manual

fine-tuning set. All pretrained models had a statistically significant improvement over

random initialization.

Analysi
o We find that the performance of BERT trained from random initialization is comparable

to that of our phrase-matching baseline. This confirms our hypothesis that the
performance benefit of BERT derives from pi i i
Biomedically pretrained BERTs do not significantly outperform default BERT. This may
indicate that our model is primarily relying on low-level pretrained language
understanding, rather than domain-specific concepts. However, this hypothesis needs
further exploration which we leave to future work.
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Experiment 3 - Distillation

Approach: Taking inspiration from self-distillation, we use our best performing model to
produce weak labels on the training set. We then train a BERT model on these labels and
fine-tune it using manual annotations.

Results:

Figure 4: Effect of distillation.
Eror  bars indicate  95%
confidence intervals calculated
using 1000  nonparametric
bootstraps.
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Supervision Methods

Analysi
o We find that of our BERT- ph approach produces a sizable (>0.03
AUROC) yet not significant improvement over fine-tuning on manual labels.
e Distillation represents our best performing method that incorporates weak labels.

Experiment 4 - Fine Tuning Training Set Size

Approach: We investigate the effect of changing the number of training samples on fine-
tuning performance.
Results: @ SERTIn @ OERTmanvn © SERTmar s @ttee
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e Figure 5: Effect of training set

size. Difference between BERT-
0.70 man-phm-man  (distilled) and
065 BERT-man at 50 samples is
150 250 statistically significant.
Number of Samples
Analysis:
® AUROC is roughly linear with respect to number of fine-tuning samples for BERT-man
in our observed label domain.
Weak labeling and distillation provide the largest benefit when labeled examples are
scarce

Conclusions

Based on our results, we find that rule based labelers in combination with a small
manually labeled set are a viable approach for training a model on our task of
detecting longitudinal change in Chest X-Rays. The results of Experiment 3 and 4
show promising avenues for future research that can lead to higher accuracy in
model performance, especially in low-label settings. We also see that our
Distillation model far outperforms our original sentence matching baseline (SM).
Our approach presents a method for accurately extracting labels on medical
reports with only a small set of manually labeled reports and a simple rule based
labeler.

References:
‘Dong Yul Oh, Jihang Kim, and Kyong Joon L
Tianming L, Terry M. Peters Lawrence H. taib, Caroline hou, Pew-Thian Yap, and Al Khan, di
748-756, Cham, 201
Jeremy v, Michael Ko, ifan Yu, , Chris Chute, Henrik Markiund, Robyn Ball,
Jayne Seekins, David A Mong, Safwan S. Halabi, esse K. Sandberg, Ricky Jones, David B Larson, Curti P. Langlotz, havk N. Patel, Matthew
 Andr h 019,

Akshay Smit, SaahilJain, Pranav Rajpurkar, Anuj Pareek, Andrew Y. Ng, and Matthew P. Lungren. Chexbert: Combining automatic labelers and expert




