Inquisition
question-answering system
Andrew Gaut, Shannon Yan, Zeb Mehring

dTM

A Reforme

Background

Background: Question-answering is a common NLP task, with applications
from web search to virtual assistants and more. Many QA systems are
based on the transformer architecture, which utilizes a concept called
self-attention to produce state-of-the-art results on question-answering
tasks.

Problem: Experiment:

e How can we produce a e Implement QANet from
question-answering system scratch.
that performs well on SQUAD e Can we apply the ideas from
2.0? the Reformer architecture to

e Many transformer-based
models can be incredibly
expensive to train and use.
How can we make it more
efficient?

e A powerful, transformer-based question-answering system
e Given a “context” paragraph and a question about the paragraph, this

model can predict the start and end of the answer to the question
contained in the original paragraph

QANet, to improve memory
use and compute time without
significantly impacting
performance?

Figure 1. QANet conceptual architecture. The input context and query are encoded separately,
then mixed. The resultant representation undergoes further encoding before being used to
predict the position of the start and end of the answer (from the context).

How can we improve efficiency? Key Ideas:

1. Locality-sensitive hashing self-attention

2. Rev(ersible)Net residual blocks

Observation: The QK" product in self-attention is a
sparse matrix, made sparser still by the application
of the softmax function.

Idea: Use locality-sensitive hashing to compute
only the nonzero entries.

% 9 9 4 g, 9; 9, 9s 9

q, 9,9, 9,9, o, I ¥

x —

Figure 2. Large matrix multiplication (as is involved in
self-attention) is costly in both compute and memory. By
leveraging sparsity, we can compute only the products of those
regions of the matrix we know to be dense, and save considerable
computational burden

3
k,
k\
K, .
k‘.
k?

Attention = softmax (QI\'T) Vv

How?

1. Recall the equation above.

2. Set Q = K (yes, this really works!).

3. Hash each row of Q using LSH.

4. Group Q by rows with the same hash value.
5. Self-attend (matrix-multiply) only within each
“bucket”.

Instead of an n x n matrix multiplication, this yields
b matrix multiplications each of expected size n/b x
n/b, where b is the number of possible hash values.

Observation: Storing the activations of
fully-connected layers for backpropagation requires
0(n?) memory.

Idea: Rearrange the equations so that activations can
be computed dynamically (rather than stored).

X, —& +P Y.

X;

How?

1. Let F be the self-attention operation, G be a
feed-forward operation.

2. Observe that X, =Y, - G(Y,)and X, =Y - F(X,).

3. X, can be computed as a function of the outputs,
and X, can be computed as a function of X,

4. The output of the final layer is just the prediction
of the block.

5. We can compute activations as we backpropagate!

X, — Y,

{H#

X Y,

4 QANet )

Encoder Block

7~ Reformer \
Modified

Encoder Block

LayerNorm

== |

Convolutions ]

Experiments and Analysis

Task:

e Predict answers to questions from the SQUAD 2.0 dataset.
e Evaluate performance using EM and F1 scores.

® Measure peak memory use and per-epoch.

Baseline = BiDaF

Experiments = QANet, LSH (QANet model with LSH Self Attention),
Reformer-modified (The QANet model with a RevTransformer in its Encoder
Block instead of the Transformer Encoder block)

@ 5
5
]
&
=
a
0
0 500k IM 1:5M 2M 25 0 500k 1M 15M 2M SM 3M 3.5M
Iterations Hterations
g a8 Reformer
=
o 5
3 ®15
g 8
2 5
< o
> Z10
5
£ s LSH
g 3
S Gost
0
2 Reformer QANet
o
° ool
50 200 250 25 50 % 100 125

100 150
Hidden Dimensions Hidden Dimensions

® QANet vastly outperforms BiDAF as expected (+6.7 EM, +6.32 F1)

o Reformer modifications reduce memory usage as expected (~10% for
small dim, decreasing as dimensions increase)

e Dot product self-attention uses more memory than LSH, as expected.

e Using LSH instead of dot product self-attention hampers performance
significantly (-2.7 EM, -3.53 F1) despite claims to the contrary by the
Reformer paper. The Reformer paper’s evaluation may have been
insufficient. It would be interesting to see a large scale study of these
modifications a la Do Transformer Modifications Transfer Across
Implementations and Applications.

Conclusions and Future Wo

e Reformer-style modifications to existing transformer-based architectures
seem effective at reducing computational burden, though come at a cost
to performance

e Future experiments: apply reformer-style modification to popular,

\ ) \ J

pensive language models (GPT-X, BERT, etc.) to make them more
accessible



