

Building a Robust QA System

Amit Kumar Singh, Mohd Zahaib Mateen

Stanford CS 224N - Winter 2022

Abstract

Pre-trained neural models for QA Pre-trained neural models for QA Systems have shown impressive results while working with in-domain data. However, their robustness to generalize on out-of domain data has been an active area of research.

With the baseline of a pre-trained DistilbERT model, we have work on several techniques to improve the robustness of the QA system. These include:

- Data Augmentation (via
- Backtranslation)

 Domain Adversarial training

 Hyper-parameter fine-tuning

The motivation is two-fold:

- Make the most of the limited ood
- data available
 To penalize the model if it tends to
 overfit on a specific domain

We use Exact Match and F1 scores as our evaluation metrics.

Introduction

- Typically, QA systems are trained on large, homogenous, use-case specific datasets
- It is then challenging to reuse the model in cases where the data changes drastically or in cases of domain shifts
- Hence the ask is to build a "Robust" QA system that performs well on
- The problem is formulated using *triples* of contexts, questions and answers (c,q,a). Given c,q; the goal is to find the character index for a
- The baseline model finetunes DistilBERT [1] which is a smaller, more distilled version of BERT. Given below is the architecture of DistilBERT

Data

datasets

The evaluation is done on the out of domain datasets to test its robustness and generalizability on unseen data Each datapoint is a set of context c, question q and answer a, where a is represented as the character ince

On a brief trip back to London, earnest, bookish bacteriologist Walter Fane (Edward Norton) is dazzled by Kitty Garstin...

... Kitty meets Charles Townsend (Liev Schreiber), a married Britisl vice consul, and the two engage in a clandestine affair. When Walter discovers his wife's infidelity, he ...

Data Augmentation

Motivation: To have a larger out-of-domain dataset for training; to have the model learn semantic similarities and discourage it from learning lexicographic similarities

Other sentences are skipped

Domain Adversarial Training

Motivation: To penalize the model for "memorizing" domain-specific encodings by training it in an adversarial manner

- Discriminator classifies the joint $\mathcal{L}_D = -\frac{1}{N}\sum_{k=1}^K\sum_{i=1}^{N_k}\log P_\theta(l_i^{(k)}|\mathbf{h}_i^{(k)})$ embeddings for (q,c) in d domains [2]
- The idea is to project (q,c) in an embedding space where the discriminator cannot categorize them based on their domains

Other approaches

We also explored the possibility of better performance by changing the learning rate, however we were unable to obtain a significant improvement in F1/EM scores.

Experiments

Baseline performance against batch#: in-domain vs out-of-domain

Analysis / Challenges

Data Augmentation by back-translation:

- We started off with the simplest approach of back-translating questions only, but that didn't work as there needs to be lexicographical similarity between $\mathbf{q/a}$.
- We then attempted to translate the entire context but that had situations of multiple answers getting missed. The quality of translation was also poor.
- We finally came up with a way to back translate on the parts of context that are unaffected by the q/a and that worked well.

Domain Adversarial Training:

- We extended the DistilBERT model to include a domain discriminator
- Based on the ID, we added labels to the data points that were representative of their domains

Final Results

- F1 Score: 57.887
- EM Score: 40.092

References

