

Alpha and Omega? Influence of Answer-Pointer Frameworks in Question Answering Models CS 224N, Winter 2022

Eden Grown-Haeberli and Nicholas Paul-Brazeau Sanchez

Problem

Question Answering: In reading comprehension, a paragraph and a question about the paragraph is provided to a model as input and an answer to the question is provided as output.

Question answering is important for three reasons:

- Almost all NLP tasks can be posed as question answering problems
 Question answering is the first step to reading comprehension
- NLP tasks and therefore QA tasks form the basis of most human computer interactions

Background

SQUaD Dataset:

- Paragraphs from Wikipedia and 150k questions
- Questions and answers crowdsourced using Turk Half of the questions cannot be answered using paragraph

Often, successful SQUaD models condition the end token on the start token. Answer-Pointer generates probability distribution based on attention across context tokens. Answer-Pointer derivatives include:

- R-Net: Machine Reading Comprehension with Self-Matching Networks
- Dynamic Coattention Networks for Question Answering
 Which models should apply an Answer-Pointer layer in order to improve

performance? Answer-Pointer output might be too deep or sophisticated for the size of the dataset.

Goal: Save time for future modelers and have a benchmark for which architectures benefit from Answer-Pointer layers by examining the effect of an Answer-Pointer output on the performance of the model.

Methods

Character-Level Embeddings

Answer-Pointer Output Self-Attention

Coattention

Figure 1. Model improvements added to the baseline BiDAF model. Improvements were mixed and matched according to the ablation testing schedule described in methods. Answer-pointer output layer was substituted for BiDAF output layer and the models were er-pointer output layer was substituted in

Ablation testing to compare models:

- A: Baseline BiDAF
- B: Char embeddings + BiDAF
- C: Char embeddings + self-attention + BiDAF C': Char embeddings + self-attention + AP
- A': Baseline with Answer-Pointer output (AP)
- B': Character embeddings + AP
- D': Char embeddings + coattention + AP
- D: Char embeddings + coattention + BiDAF E: Self-attention + BiDAF

Results

Model	EM	F1	Model	EM	F1	
Model A	57.13	60.67	Model A'	58.34	60.67	Test Leaderbo
Model A'	58.34	61.82	Model A"			Results:
$\Delta \mathbf{A}$	+1.21	+1.15	Model C' Model C' Model C''	55.82	59.07	
Model B	61.44	64.72		-2.52 62.06	-1.67 65.33	
Model B'	61.07	64.31		61.62	62 64.84 F1: 65.560	EM: 61.927
$\Delta \mathbf{B}$	-0.34	-0.41		-0.44		F1: 65.560
Model C	59.77	63.59		-0.44	-0.49	
Model C'	62.06	65.33				
ΔC	+2.29	+1.74	Model	EM	F1 60.67	
Model D	59.94	63.4	Model A	57.13		
Model D'	59.23	63.06	Model E	59.18	62.24	
$\Delta \mathbf{D}$	-0.71	34	Δ	+2.05	2.05 +1.57	

Figure 2. Results for models A. A', A", B. B', C. C', C", D. D', E

Figure 3. From left to right: EM, F1, and NLL; Top: A: Blue, A': Orange, B: Red, B': Grey; Bottom: C: Blue, C': Green, D: Pink, D': Orange

- Answer-pointer laver detracts from B model
- Expected improvement to be orthogonal to the morphology level benefit provided by character embeddings

- Answer-pointer layer and self-attention both rely on self-attention over context tokens and answer-pointer layer improves C model
- . D' able to extract correct interpretation in some cases despite having worse overall performance (see Fig 4. below)
- · Question: What equals the spring reaction force on an object suspended on a spring reaction
- Answer: Gravity
 C' Prediction: equals the object's weight
- · D' Prediction: gravity acting

Fig 4. Example of QA pair from C' and D'

Analysis

Qualitative Observations about Answer-Pointer Models vs BiDAF Output Models

- Better at encapsulating articles like "the" or "and"
 Selects more verbose answers
- More biased against giving N/A as an answer
- Sensitive to irregular punctuation schemas
- Question: What type of group is The Islamic State?
 Context: "The islamic State"...is a Wahhabi/Salafi jihadist extremist militant group...
- Answer: Wahhabi/Salafi jihadist extremist militant
- · C Prediction: extremist militant
- · C' Prediction: Wahhabi/Salafi jihadist extremist militant

Fig 5. Example of QA pair from C/C'.

Answer-Pointer Specific Qualitative Explanations

- Attention based categorical distributions over start and end tokens with argmax of these as start and end tokens output
- Very concentrated attention at the start token suggests that the passage has
- Uses attention knowledge to predict less likely tokens from the context
- causing end token attention distributions to become more concentrated OOV token has less attention weight by comparison in the end token layer
- making model less likely to predict N/A
- Understands text well when the question text is directly in the context
- paragraph or the wording is close to the input question Does not understand well when question text incorporates a word or abbreviation that the model has not seen

Conclusions

Model Observations

- Chocolate answer pointer provided inconsistent benefit to models Conject that B, C, and D already capture information that answer pointer
- could provide, leading to answer pointer effects being dampened in B', C', D'
- Propose aggressively regularizing answer pointer RNN (perhaps applying dropout on start token inputs)
- Explore whether C underperforms C' with different modeling seeds

References

- L. C. Group, "R-det. Machine reading comprehension with self-matching networks," May 2017. [Online]. Available: https://www.microsoft.com/en-up/readeaa/readea/readea/readea/readea/readea/readea/readeaa/reade

- A. Petrushko. 7-nel-pytor/holybulayer, py at a6ed4aQ2b0cf68bade9e3e43a93e229a3b6fabd/son (Online). Available: https://doi.org/10.1009/s009069943a93992093b6fabd/son https://github.com/tailerr/R-NET-pytorch/blob/a6ed4a02b0cf68bade9e3e43a93ec290a3b6fabd/son