Dynamic and Static Chunk Reader (DCR/SCR) on SQUAD 2.0 Task

epartment of Electrical Engineering, Stanford Univer

Rubens Lacouture* Sho Ko

Department of Management Scien

Mahammad Shi

ering, Stanford University

Introduction

The Stanford Question Answering Dataset (SQUAD) is a reading comprehension dataset, consist-
ing of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every
question is a segment of text, or span, from the corresponding reading passage, or the question
might be unanswerable.

The current landscape of neural reading comprehension models aim at learning to predict single
tokens or entities but fail to take into account the start and ends of the candidate answer spans
into the probability distribution. The goal of this project is to explore this avenue and develop
one such model, the Dynamic Chunk Reader (DCR) proposed by Yu et al [1]. We use BIDAF as a
baseline, improve the BIDAF model by extending the embedding layer to incorporate character-
level embedding, then compare the performance of the implemented DCR model against the
baseline.

Dataset/Task

The SQUAD 2.0 dataset is used as the reading comprehension dataset. Dataset is split into:
129,941 examples in train set, 6078 examples in dev set, and 5291 examples in test set.

Background: Dynamic Chunk Reader

Dynamic Chunk Reader (DCR) explores the idea of modeling the question answering problem as
a probability distribution over all possible answer chunks in the context paragraph, as opposed to
modeling start end end indices of the answer separately. DCR works in four steps (Fig. 2):

= Encoder Layer The encoder layer makes use of two bi-directional RNN encoders with gated
recurrent units (GRU) to encode each passage (P;) and question (Q;) for each example i to
retrieve a hidden state for each word position p;; and g;. For each position ¢, GRU computes
hy with input ; and previous state ;1

¢ =0 (Weay + Urhy—1)

up = o (Wt + Uuhy—1)

hy = tanh (Way + U (r © hy—1))
he=(1—u)-hy_y+u-hy

—
For a word ¢, the bi-directional contextual encoding of input z is represented as hy = [h,. E]

* Attention Layer The attention layer introduces a novel attention mechanism based on
word-by-word style attention methods.

=pP.p1
aj=h-hd

k=1
vy = [#0:)]
= Chunk Representation Layer This layer dynamically generates the answer chunk candidates,
and produces their representation. For an answer chunk candidate ¢ spanning from
position m to n, the chunk representation 4, » is given by concatenating the hidden state of
the first word in the chunk in the forward RNN and that of the last word in the backward RNN:

mn =9 (s - - 1m) = B)

* Ranker Layer Finally, we rank the generated answer chunks by their similarity score to the
question representation. As for answer spans, a question g with RNN encoder outputs hz_ and
h? for backward and forward passes respectively, at stage k, has a representation [h“lq‘)
Then, we model the probability of chunk ¢™" as

P(¢™" |) = softmax ('y,"_,, : [W‘ ﬁ])

The chunk with the highest probability is taken as the answer, and the negative log-likelihood is
minimized for training

Approach

Our first contribution is that we present an implementation of the Dynamic Chunk Reader model
in PyTorch.

As a second contribution, we implemented character-level word embeddings in our embedding
layers. We used this layer for both BiDAF model, as well as our newly implemented DCR model

Finally, our third contribution is what we call the Static Chunk Reader (SCR). The DCR model
generates candidate answer chunks in the 3rd layer in Figure 2, and does so rather arbitrarily.
We propose and implement a method of candidate answer generation based on the dependency
structure of the context paragraph.

resort feeland nearby open spaces.

Figure 1. An example of a SQUAD context parsed via Stanford CoreNLP tool.

In a dependency graph, words of a sentence are connected by dependency relationships, in form
of head — child. Let us call the words that do not have any children leaves. In Figure 1, some
leaves are “southern”, “Palm’, and “nearby”. As one of the variants, we propose candidate answer
chunks that are either (1) leaves, or (2) spans of text between a leaf and its parent. Examples of
(2) in Figure 1 would be “southern California coast”, “Palm Springs” and “nearby open spaces”, all
of which are, in fact, answers to SQUAD questions! Our preliminary research shows that >95% of
answers in the SQUAD dataset fit this primitive “leaf” or “leaf-parent” description. Note also that
such chunks are much less in number than the chunks generated by [1], and have other favorable
properties.

Denver Broncos

* @l prodc)

Dynamic Chunk

L """ Representation

885

Dependency-based
Chunk Generator

Who won Super Bowl 50 7
Passage Question

Figure 2. Dynamic Chunk Reader architecture from [1]. The green box and arrows show the dependency-based
chunk generator that is used in SCR.

The Static Chunk Reader (SCR), then, is a variation of DCR where the candidate answer chunks
are static - generated from text (e.g. at preprocessing time or runtime). The green box and
arrows on the left side of Figure 2 demonstrate this addition.

Experiments

We present the results of 5 experiments: 3 variations of BiDAF, and 2 variations of DCR.

Model F1 EM

BIDAF (Baseline) 62.649 59.301
BiDAF w. char embed-100 64.894 61.267
BIiDAF w. char embed-200 63.85 60.29
DCR w. char embed-100 522 522
SCR 524. 524

Table 1. Summary of model resuts.
DCRcharemb100
O B0AF-charemb 100

O BOAFcharemb200

EM Fl
tag: dev/EM tag: dev/F1

Figure 3. Tensorboard plots of model performance.

Analysis

The results show that the BIDAF implementation with character-level embeddings perform better
than the baseline BIDAF model, and character-level embeddings size doesn't have too big of an
impact on the model accuracy. We also observe that DCR and SCR models perform poorly on
the SQUAD 2.0 dataset. The results of the DCR model are lower than what we expected, as it
was shows in [1] to perform well on the SQUAD 1.0 dataset. It could be that this model does not
generalize similarly well on the SQUAD 2.0 dataset. Similarly, the performance of SCR was less
than expected. What's reassuring is that this model has lots of room for experimentation with
different dependency-based chunk generators, which we expect will increse the performance.

Conclusions

We conclude that the Dynamic Chunk Reader, at least in the form presented in [1] is not fit for
the SQUAD 2.0 challenge. Static Chunk Reader did not perform better, but we are hopeful that
it can be adapted or combined with a different architecture to deliver more promising results

References

[1] Yang Yu, Wei Zhang, Kazi Hasan, Mo Yu, Bing Xiang, and Bowen Zhou.
End-to-end answer chunk extraction and ranking for reading comprehension.
arXiv preprint arXiv:1610.09996, 2016.

