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BaCkground:

Methods:
We couple our baseline with a Coattention layer,
attention between questior
the attention outy
layer is complimented by other SQUAD

We aim to reproduce a Coattention layer on the Stanford Qucsuor? Answering daluslcl (.Sg,u:a?:,:ﬁ:
and investigate its relationship with other common SQUAD techniques. While Coatten I, o
etal.) to significantly improve state of the art F1 scores, we wanted to compare how several

techniques compliment a model with Coattention.

Papers:

Hierarchical Quuﬂon-lmlgt Co-Attention Networks for Question Answering
Lueral, 2017

 Introduces idea of Co-Attention Network
© Proposed for relationship between verbal question and visual image
o Computes an attention matrix between a vector of image features and a vector corresponding to

the words in the questions

® Important not just “where to look” but also “which words to listen to™

Dynamic Coattention Networks for Question Answering
Xiong et al, 2018

* Coattention Network
o Utilizes Lu’s co-attention framework

o Computes a co-attention matrix between the words in the document and the words in the query
* Dynamic decoder

© Computes a number of different computations at each level
o Specifically, a number called the size of the maxout pool

o

Identical structures but with differently trained welights
Only retains the maximum resule achieved
Motivation: There are multiple kinds of
to question-answering, which can be cal

©

from each computation
questions/documents that require multiple approaches
iculated in parallel using a highway maxout network.

n and context, and also

illustrated in following image by Xiong ct. al. It containg two-way \
put representation. Here,

. m:lud:s a second-level attention computation which attends ov er
A" and A” represent the normalized attention weights. We test how this
methods such as Dynamic Decoder and Character Embeddings

xPeriments: ™

We run 8 experiments to test how different techniques im;
Coattention. The techniques we test are character embed

prove our baseline model vs our baseline mod

dings and the dynamic decoder.
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® Using coattention network caused major deprovements

* Using

® Negative effect of coattention network greater than positive
® Minor improvements all coattention-based models by using dynamic decoder
—
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