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Question Answering with Self-Matching Attention

Introduction
The goal of an end-to-end QA system is to extract information from a given
source (a context) such as a passage, document, image, etc. based on the

user's request (a query). The effectiveness of such a system lies in its ability
to provide concise and accurate answers.

Q: Who leads the United States?

C: Barak Obama is the president of the USA.

Key Findings

Through our experiments, and without relying on pre-trained language
models, we improved the baseline BiDAF model to perform well on

Stanford Question Answering Dataset (SQUAD version 2). We showed how

Self-Matching Attention (SMA), first used in R-Net, can mitigate information

loss in the context-query attention mechanism, and provide considerable
improvement to the baseline. In addition, we showed how to integrate

convolution output of character embedding with word embeddings. We
analyzed the contributions of these techniques in the final model to

achieve our final results.

Related Work

The birth of the SQUAD dataset has ushered in vast research from the ML
community towards building better Language Models. Question Answering
in particular has gained momentum since that time. BiDAF is a great
example of a successful implementation of a recurrent model with context-
query attention mechanism at its core. Even with the advent of
Transformer architecture, a non-recurrent approach, the primary way of
encoding information about the passage and question has not changed.
These Attention-based approaches continue to thrive and evolve.

For example, QANet achieved much higher score on the SQUAD

leaderboard by combining ideas from BiDAF and Transformers. Models like

QANet also show improvements in architecture can boost training
performance.

The landscape seems to be changing yet again with the introduction of

large pre-trained models such as BERT. These models reduce the task of

implementing state-of-art models to a plug-n-play approach. These large

LMs have stemmed from the ground-breaking research, first explored at
the grassroots-level. So it pays to study them well!

Experiments Results e
Data
We used the SQUAD 2.0 dataset with custom dev and test sets. (The official test set is unknown and reserved for final evaluation.) Model F1 EM AVNA  FI (Test) EM (Test)
« train: 129,941 examples Baseline 6152 5827 6827
S :::‘:,: Char Embedding  63.84 6046 7024
The dataset contains records of (context,question,answer) triples of both answerable and unanswerable questions. The training set has one SMA 6692 o362 214 16567 6247

answer per question whereas the dev set has three answers for every question. In addition, 300 dimensional GloVe word embeddings and 64
dimensional character embeddings are provided.

Evaluation Method
We used the SQUAD official Exact Match (EM) and F1 metrics for quantitative evaluation of our model. EM score measures whether the
predicted answer span exactly matches the ground truth. F1 score is the harmonic mean of precision and recall. Precision (p) is calculated as
the number of correct words divided by length of predicted answer. Recall (r) is calculated as number of correct words divided by
length of ground truth.
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To track the classification accuracy of no-answer predictions, we used the recommended Answer vs. No Answer (AvNA) metric. It simply
states the percentage of correct predictions.
Experimental Details

We used the default configuration to train the baseline model:

* character embedding size: 64
« characters in a word: 16 maximum

After applying character-level embeddings, we trained the model with the following hyper-parameters:
« batch size: 32

« word dropout rate: 0.2
« 12 weight decay: 0.0005

« hidden state size: 100
« learning rate: 0.5
« char dropout rate: 0.05

The training time was ~15 minutes for each epoch on Tesla V100. All models were trained for a maximum of 30 epochs.

Figure 3: Performance scores on SQUAD 2.0 dev and test sets

We saw modest improvements for both enhancements. Integrating

learnable character embeddings lead to considerable improvement to the

baseline. This improvement is attributable to the enhanced ability of the
model to receive extra bit of signal to learn word meanings, and thus

match words and infer answer spans better. The results also highlight the

effectiveness of Self-Matching Attention. Scanning the entire context and

aggregating signal relevant to the current context word and query, limits

the information loss and produces better predictions.

Method

Improvements to Embeddings
The main idea is to combine word and character-level embedding for every word in the embedding layer. Word-based models
cannot deal with unknown (or misspelled) words i.e. words not in vocabulary. Character embedding alleviates this issue and helps
with morphology. The challenging part is in doing it efficiently since each word is made up of multiple characters. For each word
we thus generated a fixed-length vector of predetermined size by first convolving over character embeddings and then applying
max-pooling in the dimension of word length. This vector is then concatenated with word embeddings before passing through a
projection and highway network f as shown below.

e(ei) = [ (| GloVe(e;), Char Emb(e;) |)
e(qi) = [ (| GloVe(q;), CharEmb(g;) )
e(ci) and e(qi) are then passed through two LSIMs to produce for context and
query.

Improvements to Attention
One limitation of the attention mechanism, in the BiDAF model, is that the query-aware condensed representation of the context
has limited information of the context (as seen below). Running inference on this condensed representation to get an answer is
less than ideal. Important cues from the context stay hidden from the answer candidate.

iy = softmaz,(Si;)  ai= 3 ois0; b = softmaz (maz}t (S.5)) b= Bici
= -

Our approach, shows that when an answer candidate has sufficient context, it improves the quality of inference. Specifically, we
implemented Self-Matching Attention (SMA) to mitigate the information loss and derive an aggregate context representation that
extracts evidence from the entire context w.r.t. current word and query.

Conclusions

The results highlight the effectiveness of Self-Matching Attention as
described in R-Net. Scanning the entire context and aggregating signal
relevant to the current context word and query limits the information loss
and produces better predictions. Our model achieved 66.92 F1 and 63.62
EM scores on the dev set which is an 8% improvement over the baseline.

In future work we would like to explore different network structures such
as GNNs to handle questions that require complex inferences.
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