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Language models that encode structural information about 3D shapes may facilitate effi-
cient and expressive retrieval of 3D information and aid humans in the model design pro-
cess. Retrieval capabilities are helpful for querying databases of 3D shapes without human
annotation. Generative capabilities could ease software usage and inspire new designs.

BIGCHAIR, or Bl-modal Graph-CHAracter learning for Retrieval, is about learning a joint
embedding space for natural language descriptions and 3D shapes which can be used
for downstream tasks like retrieval and generation. In contrast to previous approaches [1],
we use 3D shape meshes instead of voxelizations. Our model uses a text encoder (pre-
trained transformer) to encode object descriptions and a graph encoder (Graph Attention
Network [2]) to encode the meshes of 3D shapes. We also leverage descriptive contexts to
capture important features of shape descriptions. Our learning goal is to make description
embeddings similar to their corresponding mesh embeddings.

Graph encoder design. \We experimented
with a vanilla Graph Attention Network (GAT)
and a more complex model, Directional Mesh
Encoder. The Directional Mesh Encoder is a
stack of GAT convolutional layers comple-
mented with an edge convolutional operator,
which learns an MLP over the difference in a
node’s features and its neighbors' to update
that node. Because we encode vertex coor-
dinates as node features, this module essen-
tially computes and transforms distances be-
tween vertices. We also derive a graph-level
representation by learning an MLP over the
concatenation a global mean pool and global
max pool of the final node embeddings.

Figure 3. the directional mesh encoder
essentially processes physical distances
between mesh vertices, feeding them into
an MLP and using the results to update
node embeddings

Figure 5. Loss: GAT + Aspect Figure 6. Train accuracy: GAT » Aspect

The relatively simple GAT trained jointly with a Transformer from CLIP, augmented with de-
scription embeddings, performed best on the retrieval task. The more complex Directional
Mesh Encoder performed poorly in our initial experiments. This is likely due to a small
dataset and a disproportionately deep model (3 convolutional layers + a 2-layer pooling
MLP + a 2-layer edge convolutional layer). Considering the trajectories of the loss and ac-
curacy plots, we would likely achieve better results with more compute resources and time.
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tracted adjective-noun pairs from the descriptions, running these key words separately
from the text through a transformer:; this gives us aspect-aware embeddings of the de-
scriptions. These feature-level embeddings are concatenated with the global-level em-
beddings.

Table 2. Train and test recall rates in top-5,

While our model does worse relative to chance than Text2Shape. we are learning a more
difficult task: meshes maintain hundreds of vertices and edges, as well as complex struc-
tural information. Given extra training time, a larger dataset (we used a smaller subset
than Text2Shape) and optimized architectures, a mesh encoder could plausibly outper-
form Text2Shape on ShapeNet. With a dataset containing more intricate shapes (chairs
and tables are relatively block-y), our mesh encoder would likely be superior.
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Figure 1. Basic architecture

gure 4. text encoder, with adjective-noun pair extractions

Background

Text2Shape: Text2Shape [1]is a previous work that similarly learns a joint embedding space
for text and 3D shapes. Instead of using mesh data, however, it encodes shapes as voxels
and learns a CNN over them. Applying the same convolution operation over more or less
dense voxels leads to information loss or wasted computation.

Conclusions

Experiments
We use the same dataset as TextzShape: ShapeNet plus crowdsourced textual descrip- We see that the graph is a powerful abstraction for 3D objects, and that GNNs produce
tions of its chairs and tables. The novelty in our project is in converting 3D object into Model Train RR@5 Test RR@5 shape embeddings compatible with language descriptions. When coupled with expres-
meshes, which we then represent as graphs. This allows us to make use of the versatile sive pre-trained transformers and aspect-aware features, GNN-based mesh encoders per-
and powerful class of models called graph neural networks (GNNs). Random Retrieval ~ 1%

form reasonably on shape retrieval. Our quantitative and qualitative evaluations show evi-
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Graph neural networks: GNNs update node GAT + Aspect 5.92% lence of low-hanging fruit that could strongly boost model performance
representations over several layers. In our Directional + Aspect 2.04% 1.72%

case, nodes encode mesh vertices. Each References
node defines its own computation graph, ag-
gregating and transforming messages from
its neighbors in convolutional layers. We
base our approaches ona GNN variant known
as a Graph Attention Network [2] (GAT). GAT
layers computes attention embeddings over
node pairs, allowing nodes to assign weight
to more important neighbors.

Table 1. Train and test recall rates in top-5,
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To evaluate the performance of each model. we use the recall rate (RR@k) of text-to-shape
retrieval. After contrastive pretraining. we compute embeddings for all of the meshes and
natural language descriptions in our validation dataset. For each description embedding,
we compute its dot product similarity with each mesh embedding. The recall rate at 5is the
is the percentage of descriptions whose corresponding mesh's similarity score is among
the top 5 scores.

Figure 2. Visualization of a node (in gold)
processing embeddings from its
neighbors; this processing is done for
every node in the graph
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