

Improving Language Model Robustness in the Few-Shot Setting

Drew Kaul, Dhruva Bansal, Rajas Bansal

Problem Statement

- Question Answering (QA) is a common downstream task for NLP systems to test their ability to perform reading comprehension
- The QA model takes as input a question and context and predicts the start and end positions of the answer

Our Approach:

- Data augmentation: Generate new data for the out-of-domain dataset by backtranslating the context, question, and answer
- Masked Language Modeling: Pre-train language models on question contexts to adapt to distribution shifts

Background

Problem Setup

- We have input (c, q) where c is the context and q is the query
- Our goal is to predict the start and end indices i_{start} and i_{end} of the context which contain the answer a to the question

DistilBERT:

- DistilBERT is a small-sized BERT model based on the Transformer architecture and uses a linear classifier for the QA head
- The baseline is a pre-trained DistilBERT fine-tuned on training data

Transfer Learning:

- Transfer learning helps address the distribution shift between the in-domain and out-of-domain datasets
- We perform transfer learning by training on in-domain data and fine-tuning on out-of-domain data

Methods

We performed backtranslation on the out-of-domain dataset to generate more (context, query, answer) while preserving meaning

The best performing backtranslations were English → Hindi →
English and English → Turkish → Hindi → English

Masked Language Modeling:

 Perform pre-training with the MLM task, which requires the model to predict a randomly masked token in the input sentence

Mixture of Experts:

Backtranslation:

- Train k experts and a gating function parameterized by an MLP
- Each expert is trained on different subsets of the in-domain data
- The gating MLP takes the embeddings produced by each expert and the tokenized data and outputs a weighted embedding

Other Methods:

- Freezing: we experimented with freezing different layers of the network during fine-tuning on out-of-domain data
- Regularization: we added a regularization term to the overall loss

Datasets

Results					
Model	Race	RelEx	DuoRC	Average	
DistilBERT + FT	33.17 (23.44)	64.13 (45.31)	47.17 (33.33)	48.90 (34.02)	
DistilBERT + FT + ME	31.46 (20.97)	63.08 (42.99)	46.19 (27.06)	46.91 (30.34)	
DistilBERT + FT + BCT	38.81 (25.78)	75.01 (57.03)	42.81 (34.13)	52.21 (38.98)	
DistilBERT + BCT + MLM	39.88 (24.22)	76.23 (60.16)	42.95 (34.21)	53.02 (39.53)	

Test Dataset: Final EM: 46.766 Final F1: 62.977 Rank: #3 [March 13] Analysis:

- Relation Extraction particularly benefits by data augmentation
- · Mixture of experts reduced scores across the board.
- · Backtranslation on languages with lower BLEU introduces variance
- MLM further helps the model adapt to the domain shift

Conclusions:

 Customizing model training strategies and structures to out of distribution datasets significantly improves results and was the key to our success

References:

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. 20.

[2] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts. Neural Computation, 3:79–87, 1991.
 [3] https://web.stanford.edu/class/cs224n/reports/frinal_reports/report263.pdf