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Introduction

Following the release of the Stanford Question Answering Dataset
(SQUAD), rapid innovations have been made in the realm of question

answering.

Question: Why was Tesla returned to Gospic?

Context paragraph: On 24 March 1879, Tesla was returned to Gospic under police guard
for not having a residence permit. On 17 April 1879, Milutin Tesla died at the age of 60 after
contracting an unspecified illness (although some sources say that he died of a stroke). During
that year, Tesla taught a large class of students in his old school, Higher Real Gymnasium, in
Gospic.

Answer: not having a residence permit
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The dataset provides a passage and an associated question. The
purpose of the dataset is to train deep learning models that can
comprehend the provided passage and answer the associated question

solely using information found within the passage.

Approach

To achieve better results than the baseline model, we will

augmented the algorithm in three main ways:

Character-Level Embeddings: to help handle out-of-vocabulary

and infrequently used words.

Switching to a Self-Attention Layer: to effectively aggregate

evidence from the whole passage to infer the answer.

Using a gated recurrent unit (GRU) instead of LSTM: to help

solve vanishing gradient problems.
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Figure 1. BiDirectional Attention Flow Model from Seo’s University of Washington
paper [3]. This inspired our character-level embedding implementation (circled in red).
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Figure 2. Flow model of Microsoft Research Asia’s R-NET [2]. This inspired
our self-attention implementation (circled in red).

Results

Baseline 57.08 60.42
Milestone (Character

Embeddings only) LU 0202
Best dev Score 59.14 62.51
Final test Score 59.17 62.48

Conclusions

After continuously testing our model, we found that:

* Adding character-level embeddings and lowering batch
size improved upon a BIDAF model.

* Replacing an LSTM cell type with GRU also improved
performance.

« Self-matching attention to significantly slow down the
model, and self-attention did not improve results over
the BIDAF attention layer.

Our implementation ultimately beat the baseline score,

but fell short of improving upon the performance of

Microsoft’s R-NET model.
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