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OVERVIEW

» Fake news detection merely based on news
content is tremendously challenging due to the
usage of different text length, due to the variety
of sources and different styles.

» Binary Classification task: predict if a news is
true or fake.

> Previous works often use a single source like
social media or single topic like Political, short
texts.

> Previous works use many features (stylistic,
ngrams...) or external knowledge, social context
information, don’t use the emotions.

> Fake news always play with some affective
factors to manipulate the readers with some
eye-catching terms. None have used the
affective flow in texts.

» We aim to show the impact of modeling the
flow of this affective information in a cross-
domains context with new datasets covering a
wide range of topics.

Data

3 Datasets with English content:

» MultiSourceFake: 5,994 real and 5,403
fake news, from online news websites.
> ReCOVery: 1364 true and 665 fake
news about COVID-19 from 22 reliable
and 38 unreliable websites and tweets.
> Celebrity : 250 true and 250 fake news
about celebrities from web, magazines
» We split into 80% training and 20% test
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Figure 1: FAKEFLOW model

FAKEFLOW model:

1)  Topic Information branch

- Word2vec Embeddings

- Convolution+ Max pooling to learn features, highlight important words

- Fully connected layer

- We combine affective information and topic information into a fully connected
layer to capture their interaction

- Self-Attention to capture the context of words

2) Affective Information branch

- Term frequency features using Lexicons: emotions changes(NRC lexicon),
sentiment (positive/negative), morality (categories from Moral Foundations
Dictionary), imageability (rated by their degree of abstractness), hyperbolic (high
positive/negative).

- Bidirectional GRU(Gated Recurrent Units)

- Final dot product and average +softmax

Early stopping and ReduceLROnPlateau
Hyperparameters search: layers, dimensions, activations functions, learning rate,
optimizer, pooling size, epochs, batch size.

Results and analysis

FakeFlow still has better scores than baselines models

FakeFlow has lower scores on unseen data, this is
what we expected at the beginning of this project
Generally lower scores with combined training data

Our custom model outperforms all models when we
combine data and in a cross-domain configuration.
But weak with single training data
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METHODS

Metrics: We used Accuracy and F1 score for the
classification task.

Baseline: We used a BI-GRU model and an end-
to-end LSTM baseline using Word2vec word
vectors like in the original FakeFlow method to
predict labels.

Custom FakeFlow model: replace all contracted
terms (what’s=what is...), replace Maxpooling with
Maxpooling and Averagepooling, add dropout
after each layer.

Data sets
Training Testing
A 80% iS¢ X 20% S i
B 80% MultiSourceFake 20% ReCOVery
C 80% MultiSourccFake 20% Celebrity
D  80% MultiSourceFake +80% Celebrity 20%Celebrity
E  80% MultiSourccFake +80% Cclebrity 20%ReCOVery
F  80% MultiSourceFake +80% ReCOVery 20%ReCOVery
G 80% MultiSourceFake +80% ReCOVery 20%Celebrity

Table 1: Table of proportion of data in train and (est sets.

Conclusion
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Fakeflow model is still efficient in cross-
domains contexts, even if its performance
decreased.
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But it is weak on shorter texts and unseen

topics.

% We use only 10 segments(texts splits), and
a maximum of 800 words.

<+ Custom model : more efficient when we

combine training data in cross-domains
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Future work: Try with other number of
segments/maximum of words, Try other
li multiples lar




