

Building a QA System (Robust QA track)

Ammaar Adam, Coleman Smith, Takao Yatagai

CS224N, Computer Science, Stanford University

Stanford Computer Science

Problem

- QA problem in the NLP community has gained much attention in recent years.
- An effective QA system would be extremely useful in our daily lives.
- Examples are smart assistants and for search engines.
- Difficulties of the QA system is that the question and answers can span so many different domains.
- This variability in the domains makes the problem quite difficult to tackle.
- The RobustQA track emulates this challenge by having to perform well on out-of-domain datasets, given many in-domain samples, and a very small set of out-of-domain samples.

Background

- We want to investigate the effects that meta-learning has on improving model accuracy in the context of a question answering system.
- Work based on findings from [1] and [2].
- DistilBERT baseline model is not able to adapt to out-of-domain texts.
- We try to use meta-learning to get the model to better adapt to new domains.
- We were able to contribute a codebase and results.
- This allowed us to test our metalearning methods - using DistilBERT and two classification head - on its ability to adapt to out-of-domain questions.

Results

Method	Dev		Test	
	F1	EM	F1	EM
In Domain Datasets				
Baseline	70.18	54.30	N/A	N/A
LinearLearner	65.01	48.07	N/A	N/A
MLPLearner	68.57	52.15	N/A	N/A
Oı	ut of Dor	nain Data	asets	
Baseline	47.57	31.41	N/A	N/A
LinearLearner	42.55	24.87	55.063	35.872
MLPLearner	44.77	29.32	58.331	39.358

Analysis

Figure 2: Loss curve for Meta-Learning Distilbert Model + LinearLayer [Loss over epochs]

Figure 4: In-Domain F1 Score for Meta-Learning Distilbert Model + LinearLearner [F1 score over epochs]

Figure 3: Loss curve for Meta-Learning Distilbert Model + MLP [Loss over epochs]

Figure 5: In-Domain F1 Score for Meta-Learning Distilbert Model + MLP [F1 score over

Methods

Figure 1: Diagram of the model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks. Taken from [2].

- · MAML mainly consists of two steps:
 - 1. We use the support set as examples from the new task, to adapt our model to this new domain. The adaptation is shown as θ i in the diagram above.
 - Once our model has adapted to the new task, we then see how well the adapted model performs on the query set, another set of samples from the new task.
- · We perform forward propagation on the query set
- Then we calculate the loss we get from the query set of this new task.
- Key point behind meta-learning is that we aggregate the losses we get from adapting and evaluating on different domains and use the aggregated losses for back-propagation.

Conclusions

- A meta-learning approach to the generalized question-answer task clearly shows potential for improving upon more wellestablished techniques in the field.
- Meta-learning during training could be a viable way for the model to adapt to different domains better.
- The main bottleneck of the project has been the compute resources and time.

References

- Arzoo Katiyar Kilian Q. Weinberger Tianyi Zhang, Felix Wu and Yoav Artzi. Revisiting few- sample bert fine-tuning. In The International Conference on Learning Representations (ICLR), 2021.
- Chelsea Finn, Pieter Abbeel, and Sergey Levine. Modeal-agnostic meta-learning for fast adaptation of deep networks. In arXiv preprint arXiv:1703.03400, 2017