

You Just Want Attention

Objective SQuAD 2.0 Model (Context, Question)

- Improve base BiDAF code with character encoding.
- Implement QANet architecture and experiment with different embeddings and hyperparameters.
- Ensemble results from high performing QANet and BiDAF models.

Experiments

- · Character Embeddings in BiDAF and
- · Glove vs fastText embeddings.
- · Conditional Output Layer: End of answer is a dependent on the start
- · Variants of QANet hyperparameters: Encoder layers, attentions heads, hidden size, regularization, and others.
- Data augmentation, Active Learning: Simplify 'hard' questions
- · Ensemble Model: Majority Voting. Majority confidenceweighted voting to dissolve ties.

Results

Evaluation of BiDAF model:

Table 1: Comparison of GloVe vs fastText on SQuAD dev set

Model	AvNA	Overall EM	Overall F1	EM *	F1 * 1
BiDAF with GloVe	66.5	56.2	59.2	59.1	57.5
BiDAF with fastText	68	57.8	61.3	59.9	60.3

Table 2: Analysis of character embeddings in BiDAF

Model	AvNA	Overall EM	Overall F1
BiDAF w character embedding	68.1	58.1	61.4
BiDAF w/o character embedding	66.5	56.3	59.5

Table 3: Analysis of conditonal output layer in BiDAF

Model	AvNA	Overall EM	Overall F1
BiDAF w conditional output	68.1	58.1	61.4
BiDAF w/o conditional output	68.7	58.3	61.5

Evaluation of QANet Model

Table 4: Results of different OANet model

Model		Overall EM	Overall F1	
QANet with 128 hidden size, batch size 64	75.2	65.18	69.88	
OANet with 128 hidden size, batch size 64, L2	75.53	65.78	70.13	
OANet with 128 hidden size, batch size 32	75.13	64.9	69.11	
Larger OANet with 128 hidden size, batch size 32	74.5	64.5	68.99	
OANet with 128 hidden size, batch size 32, 4 attention heads	74.2	64.3	69.33	
OANet with 64 hidden size, batch size 64	72.3	64.3	68.99	
QANet with 64 hidden size, batch size 32	72.9	64.1	68.79	

Evaluation of Ensemble Method

Table 5: Analysis of Ensemble Models

Model	AvNA	Overall EM	Overall F1	
Vanilla Majority Voting	76.13	67.13	71.11	
Weighted Majority Voting	76.55	68.54	71.31	

Conclusion

Analysis

Evaluation Metrics:

• FP, FN AvNA scores

Overall EM, F1, AvNA scores
 EM, F1 for answerable questions

We develop an efficient QANet model with single model with 70.13/ 67.31 dev set F1/EM

Table 7: Analysis of answer positions in dev set

 Answer position
 No Answer
 First line of context
 Later lines of context

 Number of examples
 3168
 918
 1992

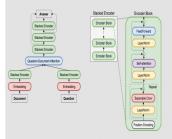
- Ensembling improves dev set F1/EM score to 71.63/68.85 (Rank 5) and test set F1/EM score to 69.42/66.46 (Rank 6).
 Potentially improve score by data
- augmentation, context-based embeddings Bonus: We are planning to use our findings and model to start a non-profit company to help kids' self learn English.

Acknowledgements

Thank you Ethan Chi and Elaine Sui for guiding us in the project!

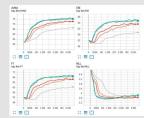
- **QANet: Combining Local Convolution** with Global Self-Attention for Reading Comprehension, Adams et. al.
- Machine Learning Using Match-LSTM and Answer Pointer, Wang et. al.

Methods



QANet Architecture

Observations



Effect of hidden size and learning rate dominates other factors like regularization, number of attention heads.