Luis Alcaraz, Troy Lawrence
Yian Zhang

Department of Computer Science, Department of Electrical Engineering

All SQUAD Needs is Self-Attention: Char-QANet

Introduction

Techniques such as Long-Short Term Memory (LSTM) networks were able to improve on
previous methods that took on sequence learning, sequence translation, marking
improvements in speech and text comprehension. Limitations were identified, however,
specifically when mapping the meaning of long sequences of data. Transformers, using self
attention and a completely new architecture, were able to identify deeper connections
between words and characters at distances that LSTMs and RNNs weren't capable of
mapping. However, Transformers architecture is unique and requires specific tasks.

Therefore, we wanted to try our hand at building a transformer like architecture. QANet gives
a possible solution to this problem. Working on top of a Bidirectional Attention Flow model,
QANet infuses this LSTM model with self-attention (what makes Transformers so powerful at
learning ies within language) and layers.

Although we are not presenting a new technique, we are trying our hand at one of the best
approaches that surpasses BIDAF's accuracies. Nevertheless, within this project, we
experimented with hyperparameters, allowing us to get a better understanding of the
architecture and its imitations.

QANet
Co-Attention
Baseline-Character
Level

ar Baseline

Above are shown our dev set results. The QANet model performance, (visuals above and metrics below), out paces baseline and

Co-Attention metrics in a regards.

Dev Results
Dev AVNA Dev EM Dev FI
Bascline 683 576 609
Baseline+Char-Level || 68.3 58.0 61.5
Coattention 68.8 58.1 61.4
QANet 726 63.0 66.4

Key Findings

+ Although the QANet paper states it is 5x faster than BiDAF, this is only true when you have
alarge number a GPUS available. QANet s a very computationally expensive model due to

Our model was able to produce the following test set results- F1: 59.425, EM: 62.785. We believe to know why there is a difference
between test and dev, which will be explored in the analysis section.

the use of Multi-Head Attention and convolutional layers in the encoder blocks.

+ Initialization of hyperparameters is key to getting successful results from such
If hyperparameters are not tuned properly, loss stagnates early on or grows exponentially.
(below are two QA models, light blue has stagnated due to improper hyperparameters

* Although Loss plateaus rather quickly compared to
BIDAF, learning continues as F1 and EM scores
continue to rise. This is due to the fact that the model
is learning more complex dependencies.

Methods

Our implementation started with character embeddings, which utilize CNN's to create the
projections of the characters. We also infused co-attention into our baseline model which
attends both question and answer simultaneously.

Al data came from SQUAD 2.0 with pre-split train, dev, and test sets. GIOVE pre-trained
embeddings were used in embedding layer

We utilize QANet's architecture, which builds off of the BIDAF model. By using residual
encoder blocks, we allow the model to learn complex dependencies. By using embedded
character and word embeddings through convolutional neural networks, it captures local
structures of text. Self-Attention utilizes multi-head attention which allows the model to learn
global interactions between word pairs.

With each layer, there are associated. We. i on these
hyperparameters and identified potential drawbacks from QANet.

Analysis

/N
fgg; raky L One of the first things we identified was the importance of hyperparameters. This
was visually apparent when choosing the proper optimizer. The baseline utilizes
Adadelta (light blue) in comparison to ADAM (orange). This, we believe, s due to

Adam’s bias correction towards ts, leading to a faster

, the scheduler was al Iy important as QANet requires an
inverse exponential increase. In addition, we found that the baseline learning rate
(.5) was inadequate for learning as it pushed the negative log likelihood loss towards
exponential increase within 3 epochs. Setting it to QANet's suggested .001 gave

o0 B0k 12M 1o 2 24w intended results.

Above we can see a comparison between our implementation of QANet and the Baseline implementation. It s key to point out
that QANet was still learning. However, given the computational limitations, we did not want to deallocate our virtual machine and
lose all progress. Nonetheless, this is significant since it means we would have trained for longer and possibly gotten better dev
results. Furthermore, it could have refined learned weights, which would have had an impact on test results.

We believe the less optimal test set results arise from this issue of training, where we only trained for 20 epochs compared to the
baseline’s 30. This is due to the fact that each epoch took 34 minutes to train for our QANet implementation in comparison to the
6-minute epochs of the baseline. Although the QANet paper claims speed increases of 3x-9x in comparison to BIDAF, this was
something our team did not experience. Again, this is due to the computation complexity of QANet, and its memory hungry
encoder blocks.

We found it very interesting how sporadic QANet's negative train/NLL
log likelihood loss was in comparison to the baseline. We tried tag: train/NLL
reducing this through various hyperparameters such as »
Gammal and Gamma2 for the Adam optimizer. However,

these test were not fruitful.

Co-attention, although a promising technique, did not preform 5
well under our implementation, only slightly outperforming ;)
the baseline. Therefore, we decided not to attempt to
implement it within our QANet model.

|
Given that QANet utilizes character embeddings, our first 0 500 1M 1SM 2M 25M 3M 35M
implementation of these embeddings was helpful in building
the QANet model.

Conclusions

QANet and the Self-Attention mechanism are very powerful. Due to
the multi-head attention, the model was able to create local and
global dependencies that surpassed LSTM’s and RNN's attempt. This
was also done with one third less epochs. Therefore, it exemplifies
how powerful these encoder blocks can be under the right resources.

However, we also learned that QANet has its limitations, which it
shares with transformers. Due to these blocks that consist of
convolutional layers and self-attention layers, the model becomes
memory expensive, which comes to limit which hyperparameters one
can choose to obtain the best results. Such challenges forced us to
limit our batch size from the recommend 64 too 16 right from the
start.

However, we are still hopeful in the use of transformers and models
like QANet which utilize transformer building blocks given
advancements made towards making transformers more memory
efficient. Papers like The Reformer: The efficient Transformer present
unique changes to transform architecture like Locality Sensitivity
Hashing Attention, which by not preforming a dot product, brings
down memory and computational task complexity to O(nlogn) instead
of 0(n"2).

Nevertheless, we were proud with the
achievements we made in our project.
We learned about the limitations oof
QANet, while observing the usefulness of
such problematic encoder blocks.

References

Yu, Adams Wei, et al. "Qanet: Combining local convolution with global
self-attention for reading comprehension.” arXiv preprint orXiv:1804.09541 (2018).

Xiong, Caiming, Victor Zhong, and Richard Socher. "Dynamic coattention networks for
question answering." arXiv preprint arXiv:1611.01604 (2016).

Seo, Minjoon, et al. "Bidirectional attention flow for machine comprehension.” arXiv
preprint arXiv:1611.01603 (2016)

Acknowledgments

C5224N Teaching Staff for an amazing quarter of learning through new experiences
and exceptional instruction

