Building a Natural Language Processing System to Characterize the Disease Progression in Radiology Reports

Problem
How do we use NLP to extract disease progression
from chest x-ray radiology reports?

e Radiology reports are used to train medical image classifiers
e Chest X-rays are the most common radiographic examination

e Challenge: Lack of annotated reports

Our work is similar to CheXbert [1], a state-of-the-art BERT-based
model that extracts the presence of clinically important observations
from free text radiology reports.

o They use Impression section of reports to extract observations

o We use Findings section of reports to extract disease progression

We use the CheXpert [2] rule-based labeler as a baseline

e We use the MIMIC-CXR dataset
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We are using three different BERT-based model variations to test our
hypotheses:

o BlueBERT

e BERT

e Bio_ClinicalBERT

Baseline: We are using the CheXpert labeler
® Phrase extraction, aggregation, and classification

Our Deep Learning implementation uses the following:

o Input: Tokenized free-text radiology reports

o Middle: Selected BERT system

e Output: Classification of “Better”, “No Change”, or “Worse”

BlueBERT performed the best in Finetune, and BERT performed the best
in Linear Evaluation
- However, no real statistical significance

Backtranslation model received BLEU scores of 32.99 (DE-EN) and 31.67
(EN-DE)

BERT Configuration
Finetune  Linear Evaluation
BlueBERT 0.536 0.672
BERT (Regular) 0.532 0.679
Bio_ClinicalBERT | 0.527 0.657
Baseline 0.474 —

Table 2: Finetune and Linear Evaluation F1 Metrics for Different Pretraining Methods

F1 Score on Linear Evaluation: Dark Blue: BlueBERT

Light Blue: BERT

Green: Bio_ClinicalBERT

Validation Loss on Backtranslation: Orange - DE-EN  Blue - EN-DE

Backtranslation is translating an input into another language and then back to
the source
e Helps augment training data with more examples

Backtranslation is supposed to be a key enhancer for our BERT-based models
e Translations actually seem to be nonsensical
e Our Multi30K dataset and Spacy vocabulary doesn’t have medical jargon

We need a medical dataset with clinical notes in another language

Findings Backtranslations

the cardiomediastinal silhouette is normal.
there is no pleural effusion or pneumoth-
orax. there is no focal lung consolidation.
views of the upper abdomen are normal.

church members <unk> <unk> , <unk>
<unk> <unk> <unk> <unk> <unk> <unk>
<unk> <unk> <unk> .

Example of Backtranslation
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Findings:

e BlueBERT (domain-specific pretrained BERT encoder) outperforms the
traditionally pretrained BERT encoder when finetuning

e BERT-based models outperform rule-based labelers, as expected

Improvements:
e Acquiring more labeled data and vetting it with radiologists would
improve the performances of our methods

Future Work:

e Create a dataset that characterizes the disease progression from prior
data points rather than single time point

® Acquire translation data for the medical domain to train back translation
system
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