

Patentability: Improving Acceptance Prediction of US Patent Applications using Ensemble Modeling

Tommy Bruzzese, Alex Lerner, Oscar O'Rahilly {tbru, alerner1, oscarfco}@stanford.edu

Problem & Summary of Work

Patents certify and protect new ideas. They are an essential part of modern innovation and are a primary driver of economic growth.

However, current patent processes are inefficient and imprecise:

- 650k annual applications to USPTO, beginning to overwhelm the office
- Only 10% of patent inventors are women; micro-entities and women are meaningfully less likely to have their patents approved

Better acceptance prediction and model understanding can reduce strain on USPTO, save governments money, and reduce bias in granting applications

Our work improves acceptance accuracy and model understanding:

For the first time, Prediction Model

Confirms that BERT models cannot yet outperform **Naive Bayes**

Background

Patents are highly-structured. They are also more complex, contextual, and technical than other natural language

Baseline for acceptance accuracy set by Naive Bayes (not BERT models):

- Prior work trained on only one section at a time (only Abstract, only Claims)
- State-of-the-art baseline set with Bernoulli Naive Baves

We train and test on #1 International Patent Classification (IPC) subclass, G06F: Electric Digital Data Processing, which constitutes 10.4% of applications

Naive Bayes (top performing baseline)

Assumes independence of tokens when classifying

$$p(Acceptance|w_1, \dots, w_{|V|}) \propto p(Acceptance) \prod_{i=1}^{|V|} p(w_i|Acceptance)$$

Technical Methods

DistilBERT (second-best performing baseline) by Sanh et al. @ HuggingFace

- · Lighter, Cheaper, Faster: 40% decrease in model size and 60% faster
- pretraining, retains 97% of performance of BERT model
- Uses knowledge distillation to minimize loss with "teacher" BERT model

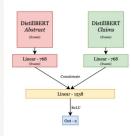
Prior work acknowledges limits of only training on one section

Our Custom Ensemble Architectures

- Ensembling is better than training one larger model:

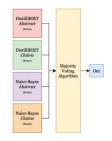
 Abstract and Claims average 1403 tokens combined (too big for BERT)
- Each section is semantically different, preserve nuance
- · Can achieve full advantage of different data representations

Ensemble Model #1 DistilBERT: Multiple Patent Sections



Froze weights of both models, including their final linear laver, and learned the weights for the final two layers which were a linear layer and ReLU

Ensemble Model #2 Naive Bayes + DistilBERT: Multiple Sections & Models



then used a majority voting algorithm to determine the final classification of the ensemble model

Experiments & Results

- Using largest, richest patent dataset: Harvard USPTO Patent Dataset
- Trained on 2011-2013 subset for efficiency 664569 patent applications
- · Validation set is balanced between rejected/accepted, i.e., true baseline of 50%

Model Evaluation: Overall Decision Accuracy

Bernoulli Naive Bayes	DistilBERT	Ensemble #1	Ensemble #2
Abstract — 60.33	Abstract — 58.63	61.76	62.91
Claims — 62.17	Claims — 59.59		

Analyzed saliency to understand how BERT models think

- Use integrated-gradient saliency analysis for DistilBERT baseline
- · We look at words that have strong impact on the overall decision prediction
- Technical words like circuit, semiconductor, device and adjectives that stress
- novelty like first have strong positive impact in the classification decision
- · Action words like introduced, and, method, controls, connected are penalized as they are generic and do not stress the concept's novelty

[CLS] a semiconductor memory device for reducing ripple noise of a back - bias voltage, and a method of driving the semiconductor memory device include a word line driving circuit and a deely topic circuit, the word line driving circuit and a few years of the contract o

Confirmed: BERT Models Alone Cannot Yet Outperform Naive Baves

- We confirm in our subset of models that BERT models underperform Naive Bayes
- · BERT models seemingly cannot do more than word-level extraction

For the decision classification task, ensemble modeling was a lightweight but

powerful improvement on our baseline accuracy. Furthermore, saliency proved to be a useful method for understanding what BERT models learned for prediction. Finally, there still are significant avenues for improvement in the patent domain, with several other tasks that can be explored in future work.

References & Acknowledgements

- 1. Mine: Sugari, Luki Melas-Nyinzi, Sugroteen Sarkar, Scott Duks Kominers, and Susar M. Sheber. The Harvord ISPTO Patent Dataset: A Large Seak-New Stottucking and Mulbi-Harpord Cerps of Patent Applications, (in review), 2022. 2. Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of BERT: Smaller, Faster, Cheap and Lighter, 2019.

Thank you to our great mentors, Mirac Suzgun and Michihiro Yasunaga for their invaluable guidance on our project