

QANet for Reading Comprehension

SQuAD**2.0**

Stanford Question Answering Dataset

Reetika Agrawal (reetika), Rohit Kulkarni (rohitnk), Ravi Rajagopal (rravi77)

Problem

- The goal is to develop a Question-Answering Model, which takes a Question and Paragraph as Inputs, and attempts to answer the question as correctly as possible - providing a measure for how well the model can understand "text".
- The baseline Model is based on BiDirectional Attention Flow (BiDAF) Architecture.
- We implemented QANet Architecture, which uses
 Convolution and Self-Attention to replace the Sequential
 Recurrent Networks from the baseline Model.

Data

- Stanford Question Answering Dataset (SQuAD) v2.0
- Around 150K Questions.
- More than half the questions can't be answered using the paragraph.
- Data Split into: ~ 90.6% Train, 4.3% Dev, 4.2% Test.

Methods

Character Embedding: Word-level embeddings do not address morphemes, misspelled or out-of-vocabulary words. We add character-level embedding to enhance input representation.

Token Features: Factual Q&As benefit from input features such as Part-of-Speech, Named-Entity Recognition, and Frequency.

Data Augmentation: Techniques used were:

- Back-Translation using different Languages (French, Chinese, Spanish, Hindi) - to rephrase the text and introduce diversity.
- Synonym Replacement to introduce new vocabulary into the text.
- Synonym Replacement to introduce new vocabulary into the tex
 Basic sanity checks were added to validate the augmented text:

Approach

Implemented QANet, a transformer-like model which has higher speed and accuracy over BiDAF.

Ensembling was utilized to combine multiple "weaker" models to build a "stronger" model with better accuracy. Two techniques were used - average probability and majority voting.

Two Methods were tested:

 $MethodB: X_{p2} = F.ReLU(W_2.[M_0, M_2])$

 $p_{end} = softmax(W_3.[X_{v1}X_{v2}])$

References

- [1] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention flow for machine comprehension. arXiv:1611.01603, 2016.
- [2] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, and Quoc V Le. Qanet: Combining local convolution with global self-attention for reading comprehension. arXiv:1804.09541, 2018.

Results/Analysis

	Description	F1	EM	AvNA
	Single models			
BiDAF	baseline	61.29	57.99	68.07
BiDAF	char_emb	63.34	60.07	70.04
BiDAF	char_emb, 3token_feat	66.09	62.70	72.26
QANet	5Conv, 1head, 96d_model, 64char_emb	66.02	62.51	72.93
QANet*	5Conv, 8head, 128d_model, 200char_emb	68.51	64.93	74.84
QANet	7Conv, 8head, 128d_model, 200char_emb	67.98	64.21	75.00
QANet**	QANet*, 3token_feat	69.44	65.89	75.77
QANet	QANet**, output layer changed	68.37	64.86	74.71
QANet	QANet**, question augmented	66.99	64.38	72.81
QANet	QANet**, paragraph augmented	67.97	64.39	74.79
	Ensemble models			
QANet ensemble	average prediction	71.73	68.73	76.66
QANet ensemble	majority voting	71.4	68.55	76.17
QANet+BIDAF ensemble	majority voting	72.2	69.7	76.89

- Basic QANet model outperformed BiDAF achieving 68.51/64.93 F1/EM score. Complexity was gradually added, in order to evaluate the importance of each element on the performance.
- No benefit was seen in increasing the Model Encoder Stack from 5 to 7.
- A big improvement (+2.5 F1 Score) was seen by increasing Attention heads from 1 to 8, Hidden size from 96 to 128.
- Character Embedding and Token features were the most important enhancements on the architecture giving +1.1 F1 score gain each.
- Data Augmentation was effective in diversifying the input data-set for both Questions and Paragraphs.
- Ensembling gave a better prediction than any stand-alone model. Average probability performed better than majority voting.

Conclusion

- QANet out-performed BiDAF.
- All the architectural changes and fine-tuning of parameters ended up with the highest scores of:
- o 69.44/65.89 F1/EM score on the dev set with single-model
- o 72.2/69.7 F1/EM on the dev set with ensemble
- o 69.73/67.22 F1/EM score on the hidden test set
- The most-common mistake is answering un-answerable question. Adding a separate head for no-answer may help