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Introduction

Question and answering (QA) systems are commonly used to test the degree of learning and
understanding exhibited by language models. In particular, the transfer learning scenario for QA
tasks, where a language model is trained on a set of resource‐rich datasets, and fine‐tuned on
resource‐poor datasets, is challenging to achieve good results.

In this work, we implemented and benchmarked multiple techniques, namely mixture of experts,
data augmentation, in‐context learning and hyperparameter tuning, towards building a QA system
with better robustness.

Datasets

Dataset Question Context Train Dev Test
In‐domain Datasets

SQuAD Crowdsourced Wikipedia 50,000 10,507 ‐
NewsQA Crowdsourced News articles 50,000 4,212 ‐
Natural Questions Search logs Wikipedia 50,000 12,836 ‐

Out‐of‐domain Datasets

DuoRC Crowdsourced Movie reviews 127 126 1248
RACE Teachers Examinations 127 128 419
RelationExtraction Synthetic Wikipedia 127 128 2693

Table 1. Data Sources and Splits

System Architecture

Our system is built with 3 building blocks, data augmentation, in‐context learning, and a
DistilBERT‐based mixture‐of‐experts gating network. This setup allows us to conduct experi‐
ments on flexible composition of individual components.

Figure 1. High level overview of system architecture

Approaches

Mixture of Experts

Figure 2. Mixture of Experts Classifier

In the mixture‐of‐experts network, multiple DistilBERT QA model instances are trained corre‐
sponding to every individual out‐of‐domain dataset. Additionally, a top‐level gating network is
trained for classifying the input source and forwarding the input to the potential domain experts.

In our implementation, the final output of our mixture‐of‐experts network is based on exactly one
domain expert model or the generalist model. The expert model will determine the final output
when high classification confidence earned, with the generalist model as fallback. Formally,

y =

{
fi if gi ≥ 0.95
fgeneralist otherwise

where fi is the output of input x evaluated on expert i’s DistilBERT QA model, fgeneralist is
the output from the generalist model. gi is the classification confidence score produced by the
classifier regarding expert i and input x.

Data Augmentation

We hook up our system with a few selected data augmentation techniques provided in nlpaug.
The augmentation will only be performed in context text with the answer phrases fully preserved.

Back Translation: Translate the context text from English to an intermediate language (Russian
or German) and then back to English using Facebook WMT models.
Random Swap: Randomly swap a word with its siblings in the same sentence.
Replacing with Synonyms: Replace some words with their synonyms.

In‐context Learning

Figure 3. Prompt‐based In‐context Learning with MLM Head

Instead of classification head in the default model, our approach uses anMLM head as proposed
in LM‐BFF. Moreover, in order for certain generated words to convey unambiguous meanings of
labels, a Label Word Mapping between MLM generated words and the true label is required.

The choice of framing QA as a language modeling task allows us to use the standard encoder‐
decoder objective that maximizes the log likelihood of the text in the ground truth target from
the output of the model, specifically at the masked indices. Formally,

L(θ) = −logP(yms|x; θ) − logP(yme|x; θ)

Approaches (cont’d)

Hyperparameter Tuning

Reduced answer length: After inspecting model outputs and analyzing the given datasets, we
reduced the max length of model predictions from 30 (default) to 9 to prevent model from
producing overdetailed predictions. This trick significantly boosted both EM and F1 scores.
Number of frozen DistilBERT layers when fine‐tuning: We freeze embedding layers and first
4 layers of transformers block in DistilBERT when fine‐tuning on out‐of‐domain datasets,
since they contain lower‐level language features which shouldn’t be broken when fine‐tuning.

Experimental Results

The model performance is measured via two metrics: Exact Match (EM) score and F1 score,
where EM score represents the percentage of predictions matching corresponding ground truth
answer, and F1 score is the harmonic mean of precision and recall.

Model name EM/F1 (Dev) EM/F1 (Test)

Baseline 34.55/50.28 ‐
Back Translation (BT) 32.46/47.45 ‐
Random Swap (RS) 35.08/50.11 ‐
Synonyms Replacement (SR) 34.03/49.21 ‐
Reduced Output Length (ROL) 34.82/50.92 ‐
Mixture of Experts 37.17/52.44 42.94/59.82
Mixture of Experts (ROL) 38.73/54.19 43.85/61.90
Mixture of Experts (RS, ROL) 38.22/54.27 ‐
Mixture of Experts (SR, ROL) 39.27/53.75 ‐
Mixture of Experts (with Generalist, ROL) 39.01/55.13 43.88/61.93
In‐context Learning 17.28/39.94 ‐
In‐context Learning (SR) 18.48/38.79 ‐

Table 2. Experimental results on validation and test sets

Model name Precision (Dev) Precision (Test)

Mixture‐of‐Experts Classifier 98.43% 99.45%

Table 3. Performance of the mixture‐of‐expert data domain classifier on dev and test sets

Based on our building blocks, we conducted experiments on various combinations of imple‐
mented techniques to observe their performance improvement. Surprisingly, the mixture of ex‐
perts model with hyperparameter‐tuning reached the highest scores in the validation set with
40.31 EM score and 54.75 F1 score. And the final submission of this approach was ranked 4th
place out of 56 submissions in the test set, with 43.88 EM score and 61.93 F1 score.

Conclusion

After trying out many combinations of techniques, we concluded that the simple idea of mixture‐
of‐experts worked very well on the target domain. This could be the result of drastically different
distribution and quality seen in target datasets. We also tuned a few hyperparameters to generally
improve model performance based on statistical analysis. Unfortunately, the metrics of in‐context
learning are subpar, probably due to the diminishing MLM inference ability resulted from model
size reduction or lack of demonstration. Our future work includes identifying the root cause of
the poor performance of in‐context learning approach, exploring effectiveness of demonstration,
and introducing more building blocks to observe their performance and composability.


