Transformer-XL on QAnet

jbchao@stanford.edu

Problem

QAnet [1] uses transformers that
don't suffer from long-term depen-
dancy information loss like RNNs
do, but since they process entire sen-
tences at a time, they can only learn
from context their fixed input win-
dow. Before pre-trained models like
BERT were introduced, QAnet was
the top performer on SQuAD v1.

My Approach

T will work on adapting QAnet to
SQuAD v2, which requires much
more precise modelling given the oc-
currance of “no answer” questions. I
will use the techniques introduced in
Transformer-XL [2] to address the
fixed window issue by reintroduc-
ing recurrance into transformers
and storing previous hidden states

in long-term memory (similar to an
LSTM) and using them in the encod-
ing of subsequent sentences.

Conclusions

The transformer-XL returned diss-
apointing results, but this is likely
due to an implementation flaw as the
base QAnet does start learning after
some time. I expect the transform-
er-XL architecture won't revolution-
ize anything, but should be able mar-
ginally improve performance. I think
it’s definitely worth pursuing differ-
ent ways of speeding up classic trans-
former architectures, especially since
increasingly popular pre-trained
models like BERT could benefit as
well from these improvements. As
such, I will continue trying to perfect
my transformer-XL architecture, and
will be satisfied once it beats my QA-
net-based model.

Model Architecture

Figure T: This is the original QAnet architecture [1].

My model uses a similar architecture to the original QAnet, with the following
major exceptions:

Convolutional Embeddings

Similar to QAnet, I pass character embeddings through a 2D convolutional layer
to learn inter-character relations, but I add an adittional 1D convolutional layer on
the combined character and word embeddings to learn relations between parts of
words. Additionally, instead of a linear feedforward layer in each encoder block, I
use convolutional layers to convolve over attention distributions.

Stacked Encoder Blocks

T use the same general architecture for the transformer encoder blocks as QAnet,
except for the linear feedforward layer, which I substitute for a convolutional layer
to capture any hidden relationships between attention distributions. For self-atten-
tion, I use an.MultiheadAttention.

Bidirectional (Q2C & C20) Attention

dev

ANA
tag: dov/AWNA

0 S0k M TSM M 26

Embedding

Experimental Details
Dataset: modified SQuAD v2

provided in starter code
T dour1 Inputs: (Q, C, A) triplets
@ | Output: start, end in C
= Task: predict where A is in C
= (if it’s in Cat all)
2l Evaluation metrics: F1, Em,
o] AVNA
.| BN provided word em-
o= bedding BiDAF models

Figure3: The results of my training. The higher-ending orange line is the baseline BIDAF model,
the pink line is the BIDAF model with convolutional embeddings, the red line is my base QAnet
model, and the bottom orange line is my transformer-XL model.

Analysis

The base QAnet model performed well, albeit slowly. Due to time and Azure con-
straints, I was not able to train the model fully, but it did show much promise with an
AVNA score of XXX, an F1 score of XXX, and an EM score of XXX. When I add the
transformer-XL modifications, however, the model refuses to learn. This is not due to

References Model Baseline Conv. QAnet
[1] Adams Wei Yu, David Dohan, Minh-Thang Luong, AVNA 64.88 69 6431
Rui Zhao, Kai Chen, Mohammad Norouzi, and Quoc EM 55.28 595 53.44
V. Le. Qanet: Combining local convolution with global F1 58.35 63 56.15
If-attention for reading hension, 2018. NLL 3.04 2.78 334
Num Iterations LIM 2.5M 4aM

2] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. Trans-

former-xl: Attentive language models beyond a fixed- Figure 4z The final results of each model, evaluated on the dev set.

length context, 2019.

an i npatibility b the two archi —they have been successfully merged

before—but rather suggests an implementation flaw. I will spend the next couple of

days ironing out these details. Some notable observations include:

« Adding just the convolutional embedding layer, however, seemed to have a marked
effect on performance and scores well over the baseline on every metric.

« The transformer-XL did continue to improve its AVNA score over time despite the
fact that its other scores steadily decreased.

