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* SciCap dataset, curated by Hsu et al. as a starting point,
which contains figures and captions for CS papers from
2010-2020.

o 133K figures without subfig, split 80/10/10 train/val/test
o Extracts first sentence of caption

« arXiv metadata to pull titles and abstracts for each paper

« Custom data pipeline to search the full text of each paper for
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