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1 Overview
In the default final project, you will explore deep learning techniques for question answering on
the Stanford Question Answering Dataset (SQuAD) [1]. The project is designed to enable you to
dive right into deep learning experiments without spending too much time getting set up. You will
have the chance to implement current state-of-the-art techniques and experiment with your own
novel designs. This year’s project will use the updated version of SQuAD, named SQuAD 2.0 [2],
which extends the original dataset with unanswerable questions.

This year the default final project consists of two tracks. In the IID SQuAD track, you will be
building a QA system for the SQuAD dataset, and in the Robust QA track, you will be building
a QA system that is robust to domain shifts. Note that for the IID SQuAD track, you are not
allowed to use pre-trained transformer models while you are allowed (and encouraged) to do so in
the Robust QA track. Please also keep in mind that there will be more help/guidance available
for the IID SQuAD track than the Robust QA track.

Note on default project vs custom project: The effort/work/difficulty that goes into the
default final project is not intended to be less compared to the custom project. It is just that the
specific kind of difficulty around coming up with your own problem and evaluation methods was
intended to be excluded, allowing students to focus an equivalent amount of effort on this provided
problem.

1.1 Question Answering
In the task of reading comprehension or question answering, a model will be given a paragraph,
and a question about that paragraph, as input. The goal is to answer the question correctly.
From a research perspective, this is an interesting task because it provides a measure for how well
systems can ‘understand’ text. From a more practical perspective, these systems (Figure 1) have
been extremely useful for better understanding any piece of text, and serving information need of
humans.

As an example, consider the SQuAD dataset. The paragraphs in SQuAD are from Wikipedia.
The questions and answers were crowdsourced using Amazon Mechanical Turk. There are around
150k questions in total, and roughly half of the questions cannot be answered using the provided
paragraph (this is new for SQuAD 2.0). However, if the question is answerable, the answer is a
chunk of text taken directly from the paragraph. This means that SQuAD systems don’t have to
generate the answer text – they just have to select the span of text in the paragraph that answers
the question (imagine your model has a highlighter and needs to highlight the answer). Below is
an example of a 〈question, context, answer〉 triple. To see more examples, you can explore the
dataset on the website https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/.

Question: Why was Tesla returned to Gospic?
Context paragraph: On 24 March 1879, Tesla was returned to Gospic under police guard
for not having a residence permit. On 17 April 1879, Milutin Tesla died at the age of 60 after
contracting an unspecified illness (although some sources say that he died of a stroke). During
that year, Tesla taught a large class of students in his old school, Higher Real Gymnasium, in
Gospic.
Answer: not having a residence permit

In fact, in the official dev and test set, every answerable SQuAD question has three answers
provided – each answer from a different crowd worker. The answers don’t always completely agree,
which is partly why ‘human performance’ on the SQuAD leaderboard is not 100%. Performance
is measured via two metrics: Exact Match (EM) score and F1 score.

• Exact Match is a binary measure (i.e. true/false) of whether the system output matches
the ground truth answer exactly. For example, if your system answered a question with
‘Einstein’ but the ground truth answer was ‘Albert Einstein’, then you would get an EM
score of 0 for that example. This is a fairly strict metric!

• F1 is a less strict metric – it is the harmonic mean of precision and recall1. In the ‘Einstein’
1Read more about F1 here: https://en.wikipedia.org/wiki/F1_score
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Figure 1: Google’s question answering system is able to answer arbitrary questions and is an
extremely useful tool for serving information needs

example, the system would have 100% precision (its answer is a subset of the ground truth
answer) and 50% recall (it only included one out of the two words in the ground truth output),
thus a F1 score of 2×prediction×recall/(precision+recall) = 2∗50∗100/(100+50) = 66.67%.

• When evaluating on the dev or test sets, we take the maximum F1 and EM scores across
the three human-provided answers for that question. This makes evaluation more forgiving
– for example, if one of the human annotators did answer ‘Einstein’, then your system will
get 100% EM and 100% F1 for that example.

Finally, the EM and F1 scores are averaged across the entire evaluation dataset to get the final
reported scores.

1.2 This project
The goal of this project is to produce a question answering system that works well on SQuAD. We
have provided code for preprocessing the data and computing the evaluation metrics, and code to
train a fully-functional neural baseline. Your job is to improve on this baseline.

In Section 5, we describe several models and techniques that are commonly used in high-
performing SQuAD models – most come from recent research papers. We provide these suggestions
to help you get started implementing better models. They should all improve over the baseline if
implemented correctly (and note that there is usually more than one way to implement something
correctly).

Though you’re not required to implement something original, the best projects will pursue some
form of originality (and in fact may become research papers in the future). Originality doesn’t
necessarily have to be a completely new approach – small but well-motivated changes to existing
models are very valuable, especially if followed by good analysis. If you can show quantitatively
and qualitatively that your small but original change improves a state-of-the-art model (and even
better, explain what particular problem it solves and how), then you will have done extremely well.

Like the custom final project, the default final project is open-ended – it will be up to you to
figure out what to do. In many cases there won’t be one correct answer for how to do something
– it will take experimentation to determine which way is best. We are expecting you to exercise
the judgment and intuition that you’ve gained from the class so far to build your models.

For more information on grading criteria, see Section 7.
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2 Getting Started
For this project, you will need a machine with GPUs to train your models efficiently. For this, you
have access to Azure, similarly to Assignments 4 and 5 – remember you can refer to the Azure
Guide and Practical Guide to VMs linked on the class webpage. As before, remember that Azure
credit is charged for every minute that your VM is on, so it’s important that your VM is only
turned on when you are actually training your models.

We advise that you develop your code on your local machine (or one of the Stanford
machines, like rice), using PyTorch without GPUs, and move to your Azure VM only once you’ve
debugged your code and you’re ready to train. We advise that you use GitHub to manage your
codebase and sync it between the two machines (and between team members) – the Practical Guide
to VMs has more information on this.

When you work through this Getting Started section for the first time, do so on your local
machine. You will then repeat the process on your Azure VM. Once you are on an appropriate
machine, clone the project Github repository with the following command.

git clone https://github.com/michiyasunaga/squad.git

This repository contains the starter code and the version of SQuAD that we will be using. We
encourage you to git clone our repository, rather than simply downloading it, so that you can
easily integrate any bug fixes that we make to the code. In fact, you should periodically check
whether there are any new fixes that you need to download. To do so, navigate to the squad
directory and run the git pull command.

Note: If you use GitHub to manage your code, you must keep your repository private.

2.1 Code overview
The repository squad contains the following files:

• args.py: Command-line arguments for setup.py, train.py, and test.py.

• environment.yml: List of packages in the conda virtual environment.

• layers.py: Layers used by the models.

• models.py: The starter model, and any others you might add.

• setup.py: Downloads pretrained GloVe vectors and preprocesses the data.

• train.py: Top-level entrypoint for training the model.

• test.py: Top-level entrypoint for testing the model and generating submissions for the
leaderboard.

• util.py: Utility functions and classes.

In addition, you will notice two directories:

• data/: Contains our custom SQuAD dataset, both the unprocessed JSON files, and (after
running setup.py), all preprocessed files.

• save/: Location for saving all checkpoints and logs. For example, if you train the baseline
with python train.py -n baseline, then the logs, checkpoints, and TensorBoard events
will be saved in save/train/baseline-01. The suffix number will increment if you train
another model with the same name.
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2.2 Setup
Once you are on an appropriate machine and have cloned the project repository, it’s time to run
the setup commands.

• Make sure you have Anaconda or Miniconda installed.

• cd into squad and run conda env create -f environment.yml

– This creates a conda environment called squad.

• Run source activate squad

– This activates the squad environment.

– Note: Remember to do this each time you work on your code.

• Run python setup.py

– pip install spacy, ujson

– This downloads GloVe 300-dimensional word vectors and the SQuAD 2.0 train/dev sets.

– This also pre-processes the dataset for efficient data loading.

– For a MacBook Pro on the Stanford network, setup.py takes around 30 minutes total.

• (Optional) If you would like to use PyCharm, select the squad environment. Example in-
structions for Mac OS X:

– Open the squad directory in PyCharm.

– Go to PyCharm > Preferences > Project > Project interpreter.

– Click the gear in the top-right corner, then Add.

– Select Conda environment > Existing environment > Click ’...’ on the right.

– Select /Users/YOUR_USERNAME/miniconda3/envs/squad/bin/python.

– Select OK then Apply.

Once the setup.py script has finished, you should now see many additional files in squad/data:

• {train,dev,test}-v2.0.json: The official SQuAD train set, and our modified version of
the SQuAD dev and test sets. See Section 3 for details. Note that the test set does not come
with answers.

• {train,dev,test}_{eval,meta}.json: Tokenized training and dev set data.

• glove.840B.300d/glove.840B.300d.txt: Pretrained GloVe vectors. These are 300-dimensional
embeddings trained on the CommonCrawl 840B corpus. See more information here: https:
//nlp.stanford.edu/projects/glove/.

• {word,char}_emb.json: Word and character embeddings, where we kept only the words
and characters that appear in the training set. This trimming process is common practice to
reduce the size of the embedding matrix and free up memory for your model.

• {word,char}2idx.json: Dictionaries mapping character and words (strings) to indices (in-
tegers) in the embedding matrices in {word,char}_emb.json.

If you see all of these files, then you’re ready to get started training the baseline model (see Section
4.2)! If not, check the output of setup.py for error messages, and ask for assistance on Ed if
necessary.
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3 The SQuAD Data

3.1 Data splits
The official SQuAD 2.0 dataset has three splits: train, dev and test. The train and dev sets are
publicly available and the test set is entirely secret. To compete on the official SQuAD leaderboards,
researchers submit their models, and the SQuAD team runs the models on the secret test set.

For simplicity and scalability, we are instead running our class leaderboard ‘Kaggle-style’, i.e.,
we release test set’s (context, question) pairs to students, and they submit their model-produced
answers in a CSV file. We then compare these CSV files to the true test set answers and report
scores in a leaderboard. Clearly, we cannot release the official test set’s (context, question) pairs
because they are secret. Therefore in this project, we will be using custom dev and test sets, which
are obtained by splitting the official dev set in half.

Given that the official SQuAD dev set contains our test set, you must make sure not to use
the official SQuAD dev set in any way. You may only use our training set and our dev set to
train, tune and evaluate your models. If you use the official SQuAD dev set to train, to
tune or evaluate your models, or to modify your CSV solutions in any way, you are
committing an honor code violation. To detect cheating of this kind, we have produced a
small amount of new SQuAD 2.0 examples whose answers are not publicly available, and added
them to our test set – your relative performance on these examples, compared to the rest of our test
set, would reveal any cheating. If you always use the provided GitHub repository and setup.py
script to set up your SQuAD dataset, and don’t use the official SQuAD dev set at all, you will be
safe.

To summarize, we have the following splits:

• train (129,941 examples): All taken from the official SQuAD 2.0 training set.

• dev (6078 examples): Roughly half of the official dev set, randomly selected.

• test (5915 examples): The remaining examples from the official dev set, plus hand-labeled
examples.

From now on we will refer to these splits as ‘the train set’, ‘the dev set’ and ‘the test set’, and
always refer to the official splits as ‘the official train set’, ‘the official dev set’, and ‘the official test
set’.

You will use the train set to train your model and the dev set to tune hyperparameters and
measure progress locally. Finally, you will submit your test set solutions to a class leaderboard,
which will calculate and display your scores on the test set – see Section 6 for more information.

3.2 Terminology
The SQuAD dataset contains many (context, question, answer) triples2 – see an example in Section
1.1. Each context (sometimes called a passage, paragraph or document in other papers) is an excerpt
from Wikipedia. The question (sometimes called a query in other papers) is the question to be
answered based on the context. The answer is a span (i.e. excerpt of text) from the context.

2As described in Section 1.1, the dev and test sets actually have three human-provided answers for each question.
But the training set only has one answer per question.
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4 Training the Baseline
As a starting point, we have provided you with the complete code for a baseline model, which uses
deep learning techniques you learned in class. In this section we will describe the baseline model
and show you how to train it.

4.1 Baseline Model
The baseline model is a based on Bidirectional Attention Flow (BiDAF) [3]. The original BiDAF
model uses learned character-level word embeddings in addition to the word-level embeddings.
Unlike the original BiDAF model, our implementation does not include a character-level embedding
layer. It may be a useful preliminary exercise to extend the baseline model to match the original
BiDAF model (i.e. ‘BiDAF-No-Answer (single model)’) baseline score in last place on the official
SQuAD 2.0 leaderboard, although we you should aim higher for your final project goal. (See
Section 5 for an explanation of how one might add character-level embeddings.)

In model.py, you will see that BiDAF follows the high-level structure outlined in the sections
below. Throughout let N be the length of the context, let M be the length of the question, let D
be the embedding size, and let H be the hidden size of the model.

Embedding Layer (layers.Embedding)

Given some input word indices3 w1, . . . ,wk ∈ N, the embedding layer performs an embedding
lookup to convert the indices into word embeddings v1, . . . ,vk ∈ RD. This is done for both the
context and the question, producing embeddings c1, . . . , cN ∈ RD for the context and q1, . . . , qM ∈
RD for the question.

In the embedding layer, we further refine the embeddings with the following two step process:

1. We project each embedding to have dimensionality H: Letting Wproj ∈ RH×D be a learnable
matrix of parameters, each embedding vector vi is mapped to hi = Wprojvi ∈ RH .

2. We apply a Highway Network [4] to refine the embedded representation. Given an input
vector hi, a one-layer highway network computes

g = σ(Wghi + bg) ∈ RH

t = ReLU(Wthi + bt) ∈ RH

h′i = g � t + (1− g)� hi ∈ RH ,

where Wg,Wt ∈ RH×H and bg, bt ∈ RH are learnable parameters (g is for ‘gate’ and t is
for ‘transform’). We use a two-layer highway network to transform each hidden vector hi,
which means we apply the above transformation twice, each time using distinct learnable
parameters.

Encoder Layer (layers.RNNEncoder)

The encoder layer takes the embedding layer’s output as input and uses a bidirectional LSTM
[5] to allow the model to incorporate temporal dependencies between timesteps of the embedding
layer’s output. The encoded output is the RNN’s hidden state at each position:

h′i,fwd = LSTM(h′i−1,fwd,hi) ∈ RH

h′i,rev = LSTM(h′i+1,rev,hi) ∈ RH

h′i = [h′i,fwd;h′i,rev] ∈ R2H .

Note in particular that h′i is of dimension 2H, as it is the concatenation of forward and backward
hidden states at timestep i.

3A word index is an integer that tells you which row (or column) of the embedding matrix contains the word’s
embedding. The word2idx dictionary maps words to their indices.
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Attention Layer (layers.BiDAFAttention)

The core part of the BiDAF model is the bidirectional attention flow layer, which we will describe
here. The main idea is that attention should flow both ways – from the context to the question
and from the question to the context.

Assume we have context hidden states c1, . . . , cN ∈ R2H and question hidden states q1, . . . , qM ∈
R2H . We compute the similarity matrix S ∈ RN×M , which contains a similarity score Sij for each
pair (ci, qj) of context and question hidden states.

Sij = wT
sim[ci; qj ; ci ◦ qj ] ∈ R

Here, ci ◦ qj is an elementwise product and wsim ∈ R6H is a weight vector. In the starter code,
the get_similarity_matrix method of the layers.BiDAFAttention class is a memory-efficient
implementation of this operation. We encourage you to walk through the implementation of
get_similarity_matrix and convince yourself that it indeed computes the similarity matrix as
described above.

Since the similarity matrix S contains information for both the question and context, we can use
it to normalize across either the row or the column in order to attend to the question or context,
respectively.

First, we perform Context-to-Question (C2Q) Attention. We take the row-wise softmax of S
to obtain attention distributions S̄, which we use to take weighted sums of the question hidden
states qj , yielding C2Q attention outputs ai. In equations, this is:

S̄i,: = softmax(Si,:) ∈ RM ∀i ∈ {1, . . . , N}

ai =

M∑
j=1

S̄i,jqj ∈ R2H ∀i ∈ {1, . . . , N}.

Next, we perform Question-to-Context(Q2C) Attention. We take the softmax of the columns
of S to get ¯̄S ∈ RN×M , where each column is an attention distribution over context words. Then
we multiply with S̄ into ¯̄S, and use the result to take weighted sums of the hidden states cj to get
the Q2C attention output :

¯̄S:,j = softmax(S:,j) ∈ RN ∀j ∈ {1, . . . ,M}

S′ = S̄ ¯̄ST ∈ RN×N

bi =

N∑
j=1

S′i,jcj ∈ R2H ∀i ∈ {1, . . . , N}.

Lastly, for each context location i ∈ {1, . . . , N} we obtain the output gi of the bidirectional
attention flow layer by combining the context hidden state ci, the C2Q attention output ai, and
the Q2C attention output bi:

gi = [ci;ai; ci ◦ ai; ci ◦ bi] ∈ R8H ∀i ∈ {1, . . . , N}

where ◦ represents elementwise multiplication.

Modeling Layer (layers.RNNEncoder)

The modeling layer is tasked with refining the sequence of vectors after the attention layer. Since
the modeling layer comes after the attention layer, the context representations are conditioned
on the question by the time they reach the modeling layer. Thus the modeling layer integrates
temporal information between context representations conditioned on the question. Similar to the
Encoder layer, we use a bidirectional LSTM Given input vectors gi ∈ R8H , the modeling layer
computes

mi,fwd = LSTM(mi−1,fwd, gi) ∈ RH

mi,rev = LSTM(mi+1,rev, gi) ∈ RH

mi = [mi,fwd;mi,rev] ∈ R2H .

The modeling layer differs from the encoder layer in that we use a one-layer LSTM in the encoder
layer, whereas we use a two-layer LSTM in the modeling layer.
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Output Layer (layers.BiDAFOutput)

The output layer is tasked with producing a vector of probabilities corresponding to each position
in the context: pstart,pend ∈ RN . As the notation suggests, pstart(i) is the predicted probability
that the answer span starts at position i, and similarly pend(i) is the predicted probability that
the answer span ends at position i. (See the ‘Predicting no-answer’ section below for details on
no-answer predictions).

Concretely, the output layer takes as input the attention layer outputs g1, . . . , gN ∈ R8H and
the modeling layer outputs m1, . . . ,mN ∈ R2H . The output layer applies a bidirectional LSTM
to the modeling layer outputs, producing a vector m′i for each mi given by

m′i,fwd = LSTM(m′i−1,fwd,mi) ∈ RH

m′i,rev = LSTM(m′i+1,rev,mi) ∈ RH

m′i = [m′i,fwd;m′i,rev] ∈ R2H .

Now let G ∈ R8H×N be the matrix with columns g1, . . . , gN , and letM ,M ′ ∈ R2H×N similarly
be matrices with columns m1 . . . ,mN and m′1, . . . ,m

′
N , respectively. To finally produce pstart and

pend, the output layer computes

pstart = softmax(Wstart[G;M ]) pend = softmax(Wend[G;M ′]),

where Wstart,Wend ∈ R1×10H are learnable parameters. In the code, notice that the softmax
operation uses the context mask, and we compute all probabilities in log-space for numerical
stability and because the F.nll_loss function expects log-probabilities.

Training Details
Loss Function

Our loss function is the sum of the negative log-likelihood (cross-entropy) loss for the start and
end locations. That is, if the gold start and end locations are i ∈ {1, . . . , N} and j ∈ {1, . . . , N}
respectively, then the loss for a single example is:

loss = − log pstart(i)− log pend(j)

During training, we average across the batch and use the Adadelta optimizer [6] to minimize the
loss.

Inference Details
Discretized Predictions

At test time, we discretize the soft predictions of the model to get start and end indices. We choose
the pair (i, j) of indices that maximizes pstart(i) · pend(j) subject to i ≤ j and j − i + 1 ≤ Lmax,
where Lmax is a hyperparameter which sets the maximum length of a predicted answer. We set
Lmax to 15 by default. Code can be found in the discretize function in util.py.

Predicting no-answer

To allow our model to make no-answer predictions, we adopt an approach that was originally
introduced in Section 5 of [7]. In particular, we prepend a OOV (Out of Vocabulary) token to
the beginning of each context. The model outputs pstart and pend soft-predictions as usual, so
no adaptation is needed within the model. When discretizing a prediction, if pstart(0) · pend(0)
is greater than any predicted answer span, the model predicts no-answer. Otherwise the model
predicts the highest probability span as usual. We keep the same NLL loss function.

Intuitively, this approach allows the model to predict a per-example confidence score that the
question is unanswerable. If the model is highly confident that there is no answer, we predict no
answer. In all cases the model continues to predict the most likely span if that answer exists.
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Exponential Moving Average of Parameters

As recommended in the BiDAF paper, we use an exponentially weighted moving average of the
model parameters during evaluation (with decay rate 0.999). Intuitively, this is similar to using
an ensemble of multiple checkpoints sampled from one training run. The details can be found in
the util.EMA class, and you will notice calls to ema.assign and ema.resume in train.py. It is
worth experimenting with removing the exponential moving average or changing the decay rate
when you train your own models.

4.2 Train the baseline
Before starting to train the baseline on your VM, consider opening a new session with tmux or
some other session manager. This will make it easier for you to leave your model training for a
long time, then retrieve the session later. For more information about TMUX, see the Practical
tips for final projects document.

To start training the baseline, run the following commands:

source activate squad # Activate the squad environment
python train.py -n baseline # Start training

After some initialization, you should see the model begin to log information like the following:

20\%|### | 26112/129941 [02:53<09:48, 176.40it/s, NLL=6.54, epoch=1]

You should see the loss – shown as NLL for negative log-likelihood – begin to drop. On a single
Azure NC6 instance, you should expect training to take about 22 minutes per epoch. Note that
the starter code will automatically use more than one GPU if your machine has more available.

You should also see that there is a new directory under save/train/baseline-01. This is
where you can find all data relating to this experiment. In particular, you will (eventually) see:

• log.txt: A record of all information logged during training. This includes a complete print-
out of the arguments at the very top, which can be useful when trying to reproduce results.

• events.out.tfevents.*: These files contain information (like the loss over time), which our
code has logged so it can be visualized by TensorBoard.

• step_N.pth.tar: These are checkpoint files, that contain the weights of the model at check-
points which achieved the highest validation metrics. The number N corresponds to how many
training iterations had been completed when the model was saved. By default a checkpoint
is saved every 50,000 iterations, but you can save checkpoints more frequently by changing
the eval_steps flag.

• best.pth.tar: The best checkpoint throughout training. The metric used to determine
which checkpoint is ‘best’ is defined by the metric_name flag. Typically you will load this
checkpoint for use by test.py, which you can do by setting the load_path flag.

4.3 Tracking progress in TensorBoard
We strongly encourage you to use TensorBoard, as it will enable you to get a much better view of
your experiments. To use TensorBoard, run the following command from the squad directory:

tensorboard --logdir save --port 5678 # Start TensorBoard

If you are training on your local machine, now open http://localhost:5678/ in your browser. If
you are training on a remote machine (e.g. Azure), then run the following command on your local
machine:

ssh -N -f -L localhost:1234:localhost:5678 <user>@<remote>
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where <user>@<remote> is the address that you ssh to for your remote machine. Then on your
local machine, open http://localhost:1234/ in your browser.

You should see TensorBoard load with plots of the loss, AvNA, EM, and F1 for both train
and dev sets. EM and F1 are the official SQuAD evaluation metrics, and AvNA is a useful metric
we added for debugging purposes. In particular, AvNA stands for Answer vs. No Answer and
it measures the classification accuracy of your model when only considering its answer (any span
predicted) vs. no-answer predictions.

The dev plots may take some time to appear because they are logged less frequently than the
train plots. However, you should see training set loss decreasing from the very start. Here is the
view after training the baseline model for 25 epochs:

In particular, over 3 million iterations we find that:

• The train loss continues to improve throughout

• The dev loss begins to rise around 2M iterations (overfitting)

• The dev AvNA reaches about 65, the dev F1 reaches about 58, and the dev EM score reaches
around 55.

• Although the dev NLL improves throughout the training period, the dev EM and F1 scores
initially get worse at the start of training, before then improving. We elaborate on this point
below.

Regarding the last bullet point, this does not necessarily indicate a bug, but rather can be
explained because we directly optimize the NLL loss, not F1 or EM: Early in training, the NLL is
quickly reduced by always predicting no-answer. Since roughly half of the SQuAD examples are
no-answer, a model predicting all no-answer will get close to 50% AvNA. In addition, the SQuAD
2.0 metrics define F1 and EM for no-answer examples to be 1 if the model predicts no answer and
0 otherwise. If we assume the model gets 0 F1 and EM on answerable examples, this results in a
mean F1/EM score of roughly 50% very early in training.

We advise you to reproduce this experiment, i.e., train the baseline and obtain results similar
to those we report above. This will give you something to compare your improved models against.
In particular, TensorBoard will plot your new experiments overlaid with your baseline experiment
– this will enable you to see how your improved models train over time, compared to the baseline.

4.4 Inspecting Output
During training you will also notice a tab in TensorBoard labeled Text. Try clicking on this tab
and you should see output similar to the following:
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Viewing these examples can be extremely helpful to debug your model, understand its strengths
and weaknesses, and as a starting point for your analysis in your final report.
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5 More SQuAD Models and Techniques
From here, the project is open-ended! As explained in Section 1.2, in this section we provide
you with an overview of models, model families, and other common techniques that are used in
high-performing SQuAD systems. Your job is to read about some of these models and techniques,
understand them, choose some to implement, carefully train them, and analyze their performance
– ultimately building the best SQuAD system you can. Implementation is an open-ended task:
there are multiple valid implementations of a single model, and sometimes a paper won’t even
provide all the details – requiring you to make some decisions by yourself. To learn more about
project expectations and grading, see Section 7.

5.1 Character-level Embeddings
Appears in: Bidirectional Attention Flow for Machine Comprehension [3]

As we learnt in lectures and Assignment 5, character-level embeddings allow us to condition on
the internal structure of words (this is known as morphology), and better handle out-of-vocabulary
words – these are advantages compared to lookup-based word embeddings. As mentioned in Section
4.1, the original BiDAF model includes a character-level embedding layer using character-level
convnets. You could alternatively try other kinds of subword modeling mentioned in lectures.

The starter code is designed to make it straightforward to add character-level word embeddings.
In particular, you will notice that the util.SQuAD class returns character indices, and these are
loaded in train.py and test.py.

5.2 Coattention
Appears in: Dynamic Coattention Networks [8]

The Dynamic Coattention Network is another high-performing SQuAD model. One of its two main
contributions is the Coattention Layer, which, like BiDAF, involves a two-way attention between
the context and the question. However, unlike Bidirectional Attention Flow, Coattention involves
a second-level attention computation – i.e., attending over representations that are themselves
attention outputs. Here, we describe the Coattention Layer, which could be substituted into the
baseline in place of the basic Attention Layer.

Assume we have context hidden states c1, . . . , cN ∈ Rl and question hidden states q1, . . . qM ∈
Rl. First, we apply a linear layer with tanh nonlinearity to the question hidden states to obtain
projected question hidden states q′

1, . . . , q
′
M :

q′
j = tanh(Wqj + b) ∈ Rl ∀j ∈ {1, . . . ,M}

where W is a weight matrix and b is a bias vector. Next, add sentinel vectors 4 c∅ ∈ Rl

and q∅ ∈ Rl (which are trainable parameters of the model) to both the context and question
states. This gives us {c1, ..., cN , c∅} and {q′

1, . . . , q
′
M , q∅}. Next, we compute the affinity matrix

L ∈ R(N+1)×(M+1), which contains the affinity scores Lij for each pair (ci, q
′
j) of context and

question hidden states:

Lij = c>i q
′
j ∈ R

Next, we use the affinity matrix L to compute attention outputs for both directions. For the
Context-to-Question (C2Q) Attention, we obtain C2Q attention outputs ai:

αi = softmax(Li,:) ∈ RM+1

ai =

M+1∑
j=1

αi
jq
′
j ∈ Rl

For the Question-to-Context (Q2C) Attention, we obtain Q2C attention outputs bj :
4The purpose of the sentinel vectors is to make it possible to attend to none of the provided hidden states. See

the paper for more details.
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βj = softmax(L:,j) ∈ RN+1

bj =

N+1∑
i=1

βi
jci ∈ Rl

Next, we use the C2Q attention distributions αi to take weighted sums of the Q2C attention
outputs bj . This gives us second-level attention outputs si:

si =

M+1∑
j=1

αi
jbj ∈ Rl ∀i ∈ {1, . . . , N}

Finally, we concatenate the second-level attention outputs si with the first-level C2Q attention
outputs ai, and feed the sequence through a bidirectional LSTM. The resulting hiddens tates ui of
the biLSTM are known as the coattention encoding. This is the overall output of the Coattention
Layer.

{u1, ...,uN} = biLSTM({[s1;a1], . . . , [sN ;aN ]})

5.3 Conditioning End Prediction on Start Prediction
Appears in: Match-LSTM and Answer Pointer [9]

Our baseline predicts the start location and the end location independently, given the final
layer’s activations b′. Instead, you could build a model that conditions the probability distribution
for the end location on the start location probability distribution

The Answer Pointer component of the ‘Match-LSTM with Answer Pointer’ model5 does this.
The Answer Pointer is similar to the decoder component of a sequence-to-sequence model, like
we saw in lectures. However, it is a Pointer Network, meaning that on each timestep, instead
of outputting a probability distribution over a vocabulary (like a NMT decoder), it outputs a
probability distribution over locations in the context (i.e. locations it could point to). Suppose we
have a set of representations hr

1, . . . ,h
r
N ∈ Rl, one for each context location. The Answer Pointer

is a RNN that is run for exactly two timesteps. On the first timestep, the Answer Pointer hidden
state attends to hr

1, . . . ,h
r
N , producing an attention distribution βs ∈ RN and an attention output

as ∈ Rl. We use βs as pstart, the probability distribution for the start location. On the second
timestep, the attention output as is used as input to the Answer Pointer RNN (this is how pend

depends on pstart). Then we use the new Answer Pointer hidden state to attend to hr
1, . . . ,h

r
N ,

producing an attention distribution βe ∈ RN which we use as pend.
You could implement a system like this to replace the Output Layer of our baseline. You could

additionally read the Match-LSTM and Answer Pointer paper to learn about the other techniques
used in the model (for example, the Match-LSTM component).

5.4 Span Representations
Appears in: Dynamic Chunk Reader [10]

The SQuAD task can be phrased as the task of determining the joint probability distribution

P (lstart, lend | context, question)

where lstart and lend are random variables corresponding to the start and end locations of the
true answer span. The majority of SQuAD models (including our baseline) calculate this as the
product of the probabilities of the start and end positions:

P (lstart, lend | context, question) = P (lstart | context, question)P (lend | context, question).

5When reading the paper, focus on the Boundary Model (described here), not the Sequence Model.
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As an alternative approach, you could build a model that directly computes the probability of
each possible span. This is what the Dynamic Chunk Reader (DCR) does. The DCR model first
obtains a list of candidate spans. This can be done, for example, by enumerating all possible spans
of text up to n tokens long.6

Next, the DCR model builds a representation for each of these candidate spans (or chunks).
Suppose that we have a sequence (over context locations) of representations {

−→
b1,
←−
b1, . . . ,

−→
bN ,
←−
bN},

which we obtained as the forwards and backwards hidden states from a bidirectional RNN encoder
(note we have not explained what the input to this bidirectional RNN was). To represent the
candidate chunk from position i to position k, the DCR takes the concatenation [

−→
b i;
←−
b k]. Once

you’ve obtained these fixed-size representations for each candidate chunk, you can implement
a simple softmax-based Output Layer similar to the one in our baseline - but instead it will
produce a probability distribution over candidate chunks (instead of two distributions over context
context locations). If you choose to implement this model, you will need to think about how
you will build the chunk representations from the {

−→
bi ,
←−
bi}. If you implement this model, think

about the advantages and disadvantages of this approach, and comment on them in your writeup.
How scalable is this model to longer pieces of text? What is the complexity of enumerating and
processing all possible chunks? Can you make this model more efficient?

5.5 Self-attention
Appears in: R-Net: Machine Reading Comprehension with Self-Matching Networks7

Self-attention is a phrase that can have slightly different meanings depending on the setting. In a
RNN-based language model, self-attention often means that the hidden state ht attends to all the
previous hidden states so far h1, . . . ,ht−1. In a context where you are encoding some text length
n, self-attention might mean that ht attends to all the hidden states h1, . . . ,hn (even including
itself). Transformers are built on a kind of self-attention. The main idea of self-attention is that
the query vector is from the same set as the set of value vectors.

R-Net is a simple but high-performing SQuAD model that has both a Context-to-Question
attention layer (similar to our baseline), and a self-attention layer (which they call Self-Matching
Attention). Both layers are simple applications of additive attention (as described in lectures).
The R-Net paper is one of the easier ones to understand.

5.6 Transformers
Appears in: QANet: Combining Local Convolution with Global Self-Attention for Reading Com-
prehension [11]

QANet adapts ideas from the Transformer [12] and applies them to question answering, doing
away with RNNs and replacing them entirely with self-attention and convolution. The main
component of the QANet model is called an Encoder Block. The Encoder Block draws inspiration
from the Transformer: The two modules are similar in their use of positional encoding, residual
connections, layer normalization, self-attention sublayers, and feed-forward sublayers. However,
an Encoder Block differs from the Transformer in its use of stacked convolutional sublayers, which
use depthwise-separable convolution to capture local dependencies in the input sequence. Prior to
BERT, QANet had state-of-the-art performance for SQuAD 1.1. We will have a whole lecture to
learn about Transformers in week 7.

5.7 Transformer-XL
Original paper: Transformer-XL: Language Modeling with Longer-Term Dependency [13]

The motivation for Transformer-XL is to allow Transformers to learn longer-term dependencies
(similar to the motivation for LSTMs vs vanilla RNNs). Transformer-XL achieves this goal by using
a segment-level recurrence mechanism. Note that the authors report improved performance on

6If you implement this model you should consult your histogram of answer lengths in order to select a sensible
value for n.

7https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf
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both long and short sequences. Thus even for question answering, where the attention mechanism
can consider the entire context at once, we might expect to see performance gains over vanilla
Transformers. One idea would be to adapt ideas from Transformer-XL to the QANet architecture.

5.8 Reformer
Original paper: Reformer: The Efficient Transformer [14]

Going further, most recent model Reformer is designed to handle 1 million words in context
windows, while using only 16GB of memory. It combines two techniques: locality-sensitive hashing
to reduce the sequence-length complexity as well as reversible residual layers to reduce storage
requirements. One idea is to find relevant text from the Internet, append to context (original
excerpt from Wikipedia), and process it with Reformer.

5.9 Additional input features
Appears in: Reading Wikipedia to Answer Open-Domain Questions (aka DrQA) [15]

Although Deep Learning is able to learn end-to-end without the need for feature engineering, it
turns out that using the right input features can still boost performance significantly. For example,
the DrQA model significantly boosts performance on SQuAD by including some simple but useful
input features (for example, a word in the SQuAD context passage is represented not only by its
word vector, but is also tagged with features representing its frequency, part-of-speech tag, named
entity type, etc.). If you implement a model like this, reflect on the tradeoff between feature
engineering and end-to-end learning, and comment on it in your report.

5.10 More models and papers
The models and techniques we have presented here are far from exhaustive. There are many
published papers on SQuAD, some of which can be found on the SQuAD leaderboard, and others
via searching online – there may be new ones that we haven’t seen yet! In addition, there is lots of
deep learning research on question answering and reading comprehension tasks other than SQuAD
(see the Question Answering lecture for inspiration, or look online at lists of other QA datasets8).
These papers may contain interesting ideas that you can apply to SQuAD.

5.11 Other improvements
There are many other things besides architecture changes that you can do to improve your per-
formance. The suggestions in this section are mostly quick to implement, but it will take time to
run the necessary experiments and draw the necessary comparisons. Remember that we will be
grading your experimental thoroughness, so do not neglect the hyperparameter search!

• Regularization. The baseline code uses dropout. Experiment with different values of
dropout and different types of regularization.

• Sharing weights. The baseline code uses the same RNN encoder weights for both the
context and the question. This can be useful to enrich both the context and the question
representations. Are there other parts of the model that could share weights? Are there
conditions under which it’s better to not share weights?

• Word vectors. By default, the baseline model uses 300-dimensional pre-trained GloVe
embeddings to represent words, and these embeddings are held constant during training.
You can experiment with other sizes or types of word embeddings, or try retraining or fine-
tuning the embeddings.

• Combining forward and backward states. In the baseline, we concatenate the forward
and backward hidden states from the bidirectional RNN. You could try adding, averaging or
max pooling them instead.

8http://nlpprogress.com/english/question_answering.html
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• Types of RNN. Our baseline uses a bidirectional LSTM. You could try a GRU instead –
it might be faster.

• Model size and number of layers. With any model, you can try increasing the model
size, usually at the cost of slower runtime.

• Optimization algorithms. The baseline uses the Adadelta optimizer. PyTorch supports
many other optimization algorithms. You might also experiment with learning rate annealing.
You should also try varying the learning rate.

• Ensembling. Ensembling almost always boosts performance, so try combining several of
your models together for your final submission. However, ensembles are more computationally
expensive to run.
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6 Submitting to the Leaderboard

6.1 Overview
We are hosting two leaderboards on Gradescope, where you can compare your performance against
that of your classmates. F1 score is the performance metric we will use to rank submissions,
although both EM and F1 scores will be displayed. The leaderboards can be found at the following
links:

1. Dev: TBA

2. Test: TBA

You are allowed to submit to the dev leaderboard as many times as you like, but you will only
be allowed 3 successful submissions to the test leaderboard. For your final report, we
will ask you to choose a single test leaderboard submission to consider for your final performance.
Therefore you must make at least one submission to the test leaderboard, but be careful not to
use up your test submissions before you have finished developing your best model.

Submitting to the leaderboard is similar to submitting any other assignment on Gradescope,
except that your submission is a CSV file of answers on the dev/test set. You may use the starter
code’s test.py script to generate a submission file of the correct format, or see lines 128-135 for
example code to generate a submission file. At a high level, the submission file should look like
the following:

Id,Predicted
001fefa37a13cdd53fd82f617,Governor Vaudreuil
00415cf9abb539fbb7989beba,May 1754
00a4cc38bd041e9a4c4e545ff,
...
fffcaebf1e674a54ecb3c39df,1755

The header is required, and each subsequent row must contain two columns: the first column is a
25-digit hexadecimal ID for the question/answer example (IDs defined in {dev,test}-v2.0.json),
and the second column is your predicted answer (or the empty string for no answer). The rows
can be in any order. For the test leaderboard, you must submit a prediction for every example,
and for the dev leaderboard, you must submit predictions for at least 95% of the examples (e.g.,
to allow for the default preprocessing in setup.py which throws away long examples in the dev
set).

6.2 Submission Steps
Here are the concrete steps for submitting to the leaderboard:

1. Generate a submission file (e.g., by running test.py in the starter code) for either the dev
or test set. Make sure to set the --split flag for test.py accordingly.

2. Save the submission file locally under the name submission.csv.

3. Use the URLs above to navigate to the leaderboard. Make sure to choose the correct
leaderboard for your split (DEV vs. TEST).

4. Find the submit button in Gradescope, and choose the CSV file to upload.

5. Click upload and wait for your scores. The submission output will tell you the submission
EM/F1, although the leaderboard will keep scores for the submission with the highest F1
score thus far.

There should be useful error messages if anything goes wrong. If you get an error that you cannot
understand, please make a post on Ed.
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7 Grading Criteria
The final project will be graded holistically. This means we will look at many factors when
determining your grade: the creativity, complexity and technical correctness of your approach,
your thoroughness in exploring and comparing various approaches, the strength of your results,
the effort you applied, and the quality of your write-up, evaluation, and error analysis. Generally,
implementing more complicated models represents more effort, and implementing more unusual
models (e.g. ones that we have not mentioned in this handout) represents more creativity. You are
not required to pursue original ideas, but the best projects in this class will go beyond the ideas
described in this handout, and may in fact become published work themselves!

There is no pre-defined F1 or EM score to ensure a good grade. Though we have run some
preliminary tests to get some ballpark scores, it is impossible to say in advance what distribution of
scores will be reasonably achievable for students in the provided timeframe. As in previous years,
we will have to grade performance relative to the leaderboard as a whole (though, comparing only
within the IID SQuAD track). Note that the strength of your results on the leaderboard is only
one of the many factors we consider in grading. Our focus is on evaluating peoples’ well-reasoned
research questions, explanations, and experiments that clearly evaluate those questions.

For similar reasons, there is no pre-defined rule for which of the models in Section 5 (or else-
where) would ensure a good grade. Implementing a small number of things with good results and
thorough experimentation/analysis is better than implementing a large number of things that don’t
work, or barely work. In addition, the quality of your writeup and experimentation is important:
we expect you to convincingly show that your techniques are effective and describe why they work
(or the cases when they don’t work).

In the analysis section of your report, we want to see you go beyond the simple F1 and EM
results of your model. Try breaking down the scores – for example, how does your model perform
on questions that start with ‘who’? Questions that start ‘when’? Questions that start ‘why’?
What are the other categories? Can you categorize the types of errors made by your model?

As with all final projects, larger teams are expected to do correspondingly larger projects. We
will expect more complex things implemented, more thorough experimentation, and better results
from teams with more people.
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8 Honor Code
Any honor code guidelines that apply for the final project in general also apply for the default
final project. Here are some guidelines that are specifically relevant to the IID SQuAD track of
the default final project:

1. You may not use a pre-existing implementation for the SQuAD challenge as your starting
point unless you wrote that implementation yourself. If you believe you have a good reason
to use a pre-existing SQuAD implementation as your starting point (for example, you have
a specific cutting-edge research idea that would build on the state-of-the-art), make an Ed
post to get permission.

2. You are not allowed to use any pre-trained contextual embeddings (such as BERT, ELMO,
GPT, etc) for your system.

3. As described above, you may not use pre-existing QA models or pre-trained contextual
embeddings, but you are allowed to use other pre-existing NLP tools such as a POS tagger,
dependency parser, and coreference module that are not built on top of pre-trained contextual
embeddings.

4. As described in Section 3.1, it is an honor code violation to use the official SQuAD dev set
in any way. You may not use any data other than our training set and our dev set provided
in this assignment. This means both labeled as well as unlabeled data (e.g., unlabeled data
from other sources such as Wikipedia may not be used).

5. You are free to discuss ideas and implementation details with other teams (in fact, we en-
courage it!). However, under no circumstances may you look at another CS224n team’s code,
or incorporate their code into your project.

6. Do not share your code publicly (e.g., in a public GitHub repo) until after the class has
finished.
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